Beichuan Deng, Zhishen Tong, Xiangkun Xu, Hamid Dehghani, Ken Kang-Hsin Wang
{"title":"自监督混合神经网络实现用于癌症研究的定量生物发光断层成像。","authors":"Beichuan Deng, Zhishen Tong, Xiangkun Xu, Hamid Dehghani, Ken Kang-Hsin Wang","doi":"10.1364/BOE.531573","DOIUrl":null,"url":null,"abstract":"<p><p>Bioluminescence tomography (BLT) improves upon commonly-used 2D bioluminescence imaging by reconstructing 3D distributions of bioluminescence activity within biological tissue, allowing tumor localization and volume estimation-critical for cancer therapy development. Conventional model-based BLT is computationally challenging due to the ill-posed nature of the problem and data noise. We introduce a self-supervised hybrid neural network (SHyNN) that integrates the strengths of both conventional model-based methods and machine learning (ML) techniques to address these challenges. The network structure and converging path of SHyNN are designed to mitigate the effects of ill-posedness for achieving accurate and robust solutions. Through simulated and in vivo data on different disease sites, it is demonstrated to outperform the conventional reconstruction approach, particularly under high noise, in tumor localization, volume estimation, and multi-tumor differentiation, highlighting the potential towards quantitative BLT for cancer research.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 11","pages":"6211-6227"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563333/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-supervised hybrid neural network to achieve quantitative bioluminescence tomography for cancer research.\",\"authors\":\"Beichuan Deng, Zhishen Tong, Xiangkun Xu, Hamid Dehghani, Ken Kang-Hsin Wang\",\"doi\":\"10.1364/BOE.531573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioluminescence tomography (BLT) improves upon commonly-used 2D bioluminescence imaging by reconstructing 3D distributions of bioluminescence activity within biological tissue, allowing tumor localization and volume estimation-critical for cancer therapy development. Conventional model-based BLT is computationally challenging due to the ill-posed nature of the problem and data noise. We introduce a self-supervised hybrid neural network (SHyNN) that integrates the strengths of both conventional model-based methods and machine learning (ML) techniques to address these challenges. The network structure and converging path of SHyNN are designed to mitigate the effects of ill-posedness for achieving accurate and robust solutions. Through simulated and in vivo data on different disease sites, it is demonstrated to outperform the conventional reconstruction approach, particularly under high noise, in tumor localization, volume estimation, and multi-tumor differentiation, highlighting the potential towards quantitative BLT for cancer research.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"15 11\",\"pages\":\"6211-6227\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563333/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.531573\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.531573","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Self-supervised hybrid neural network to achieve quantitative bioluminescence tomography for cancer research.
Bioluminescence tomography (BLT) improves upon commonly-used 2D bioluminescence imaging by reconstructing 3D distributions of bioluminescence activity within biological tissue, allowing tumor localization and volume estimation-critical for cancer therapy development. Conventional model-based BLT is computationally challenging due to the ill-posed nature of the problem and data noise. We introduce a self-supervised hybrid neural network (SHyNN) that integrates the strengths of both conventional model-based methods and machine learning (ML) techniques to address these challenges. The network structure and converging path of SHyNN are designed to mitigate the effects of ill-posedness for achieving accurate and robust solutions. Through simulated and in vivo data on different disease sites, it is demonstrated to outperform the conventional reconstruction approach, particularly under high noise, in tumor localization, volume estimation, and multi-tumor differentiation, highlighting the potential towards quantitative BLT for cancer research.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.