暴露于阿米替林会通过改变神经递质水平干扰成年斑马鱼及其后代的行为。

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology C-toxicology & Pharmacology Pub Date : 2024-11-15 DOI:10.1016/j.cbpc.2024.110079
Jie Tang, Anqi Liu, Kun Chen, Yanhong Shi, Xuchun Qiu
{"title":"暴露于阿米替林会通过改变神经递质水平干扰成年斑马鱼及其后代的行为。","authors":"Jie Tang, Anqi Liu, Kun Chen, Yanhong Shi, Xuchun Qiu","doi":"10.1016/j.cbpc.2024.110079","DOIUrl":null,"url":null,"abstract":"<p><p>Amitriptyline (AMI), one of the widely used tricyclic antidepressants (TCAs), has become a pharmaceutical contaminant frequently detected in aquatic ecosystems. However, the impacts of AMI exposure and underlying mechanisms on fish are still limited. In this study, adult zebrafish (F0) were exposed to AMI at 0 (control), 0.8, and 8 μg/L for 14 days. Subsequently, the exposed zebrafish were paired for spawning, and their offspring (F1) were reared in an AMI-free medium until 5 days post-fertilization (dpf). This study aimed to assess variations in behaviors and neurotransmitter levels in both the F0 (at the end of the 14-day exposure) and F1 generations (at 5 dpf). As a result, waterborne AMI exposure significantly reduced the locomotor activity, frequency of body contact, and duration of chase in F0 zebrafish, and resulted in notable changes in monoamine neurotransmitter levels in their brains. Parental exposure to AMI significantly elevated the heart rate and eye movement but reduced the locomotor activity in the F1 zebrafish, also along with significant changes in monoamine neurotransmitters and acetylcholine. Furthermore, significant correlations between the changes in behavioral traits and neurotransmitter levels were identified in both F0 and F1 generations. Our findings confirm the critical role of monoamine modulation in the neurobehavioral toxicity of AMI on zebrafish and their offspring, and emphasize the importance of paying attention to its multigenerational effects on fish.</p>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":" ","pages":"110079"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exposure to amitriptyline disturbs behaviors in adult zebrafish and their offspring via altering neurotransmitter levels.\",\"authors\":\"Jie Tang, Anqi Liu, Kun Chen, Yanhong Shi, Xuchun Qiu\",\"doi\":\"10.1016/j.cbpc.2024.110079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amitriptyline (AMI), one of the widely used tricyclic antidepressants (TCAs), has become a pharmaceutical contaminant frequently detected in aquatic ecosystems. However, the impacts of AMI exposure and underlying mechanisms on fish are still limited. In this study, adult zebrafish (F0) were exposed to AMI at 0 (control), 0.8, and 8 μg/L for 14 days. Subsequently, the exposed zebrafish were paired for spawning, and their offspring (F1) were reared in an AMI-free medium until 5 days post-fertilization (dpf). This study aimed to assess variations in behaviors and neurotransmitter levels in both the F0 (at the end of the 14-day exposure) and F1 generations (at 5 dpf). As a result, waterborne AMI exposure significantly reduced the locomotor activity, frequency of body contact, and duration of chase in F0 zebrafish, and resulted in notable changes in monoamine neurotransmitter levels in their brains. Parental exposure to AMI significantly elevated the heart rate and eye movement but reduced the locomotor activity in the F1 zebrafish, also along with significant changes in monoamine neurotransmitters and acetylcholine. Furthermore, significant correlations between the changes in behavioral traits and neurotransmitter levels were identified in both F0 and F1 generations. Our findings confirm the critical role of monoamine modulation in the neurobehavioral toxicity of AMI on zebrafish and their offspring, and emphasize the importance of paying attention to its multigenerational effects on fish.</p>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\" \",\"pages\":\"110079\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cbpc.2024.110079\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.cbpc.2024.110079","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿米替林(AMI)是广泛使用的三环类抗抑郁药(TCAs)之一,已成为水生生态系统中经常检测到的药物污染物。然而,AMI 暴露对鱼类的影响及其潜在机制仍然有限。在本研究中,成年斑马鱼(F0)分别暴露于 0(对照组)、0.8 和 8 μg/L 的 AMI 14 天。随后,暴露的斑马鱼配对产卵,它们的后代(F1)在不含 AMI 的培养基中饲养至受精后 5 天(dpf)。本研究旨在评估 F0 代(14 天暴露结束时)和 F1 代(5 dpf 时)的行为和神经递质水平的变化。结果表明,水中AMI暴露显著降低了F0斑马鱼的运动活性、身体接触频率和追逐持续时间,并导致其大脑中单胺神经递质水平发生明显变化。亲本暴露于 AMI 会显著提高 F1 斑马鱼的心率和眼球运动,但会降低其运动活动,同时单胺类神经递质和乙酰胆碱也会发生显著变化。此外,在 F0 代和 F1 代中,行为特征的变化与神经递质水平之间存在明显的相关性。我们的研究结果证实了单胺调节在 AMI 对斑马鱼及其后代神经行为毒性中的关键作用,并强调了关注 AMI 对鱼类多代影响的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exposure to amitriptyline disturbs behaviors in adult zebrafish and their offspring via altering neurotransmitter levels.

Amitriptyline (AMI), one of the widely used tricyclic antidepressants (TCAs), has become a pharmaceutical contaminant frequently detected in aquatic ecosystems. However, the impacts of AMI exposure and underlying mechanisms on fish are still limited. In this study, adult zebrafish (F0) were exposed to AMI at 0 (control), 0.8, and 8 μg/L for 14 days. Subsequently, the exposed zebrafish were paired for spawning, and their offspring (F1) were reared in an AMI-free medium until 5 days post-fertilization (dpf). This study aimed to assess variations in behaviors and neurotransmitter levels in both the F0 (at the end of the 14-day exposure) and F1 generations (at 5 dpf). As a result, waterborne AMI exposure significantly reduced the locomotor activity, frequency of body contact, and duration of chase in F0 zebrafish, and resulted in notable changes in monoamine neurotransmitter levels in their brains. Parental exposure to AMI significantly elevated the heart rate and eye movement but reduced the locomotor activity in the F1 zebrafish, also along with significant changes in monoamine neurotransmitters and acetylcholine. Furthermore, significant correlations between the changes in behavioral traits and neurotransmitter levels were identified in both F0 and F1 generations. Our findings confirm the critical role of monoamine modulation in the neurobehavioral toxicity of AMI on zebrafish and their offspring, and emphasize the importance of paying attention to its multigenerational effects on fish.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
期刊最新文献
Exposure to amitriptyline disturbs behaviors in adult zebrafish and their offspring via altering neurotransmitter levels. Non-invasive recording of heartbeats in Danio rerio and Daphnia magna to assess the toxicity of imidacloprid and glyphosate. Risk assessment of developmental and neurotoxicity by the flavoring agent perillaldehyde: NAC (N-acetylcysteine) mitigation of oxidative stress-mediated inhibition of the Nrf2 pathway. Antioxidant response fail to rescue growth of Hermetia illucens L. larvae induced by copper accumulated during long-term exposure A metabolomic analysis on the toxicological effects of the universal solvent, dimethyl sulfoxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1