Amyloodinium ocellatum(甲壳纲,Thoracosphaeraceae)自由生活阶段的精细结构特征:一种海洋鱼类外寄生虫。

IF 2.1 4区 生物学 Q3 MICROBIOLOGY Journal of Eukaryotic Microbiology Pub Date : 2024-11-18 DOI:10.1111/jeu.13067
Zhicheng Li, Jingyu Zhuang, Jizhen Cao, Qing Han, Zhi Luo, Baotun Wang, Hebing Wang, Chuanfu Dong, Anxing Li
{"title":"Amyloodinium ocellatum(甲壳纲,Thoracosphaeraceae)自由生活阶段的精细结构特征:一种海洋鱼类外寄生虫。","authors":"Zhicheng Li, Jingyu Zhuang, Jizhen Cao, Qing Han, Zhi Luo, Baotun Wang, Hebing Wang, Chuanfu Dong, Anxing Li","doi":"10.1111/jeu.13067","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloodinium ocellatum is a protozoan parasite that causes amyloodiniosis in marine and brackish water fish, threatening global aquaculture. The present study investigates the morphology and ultrastructure of the free-living stages of A. ocellatum (tomont and dinospore) using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Dinospores measured 13.03-19.66 μm in length, 12.32-18.71 μm in width, and were laterally flattened. Dinospores had a transverse flagellum for propulsion and a longitudinal flagellum for direction control. The cyst wall had three distinct layers and included cellulose. The outer wall was coated with numerous bacteria. The orange-red speckled eyespot was observed all tomont developmental stages and in the dinospore of A. ocellatum. Tomonts proliferation required successive nuclear division, the formation of new cyst walls, and cytoplasmic segregation. The cytoplasm comprises mainly the matrix, organelles, and inclusions. The matrix was grainy and evenly distributed. In addition to organelles, including mitochondria with tubular cristae, Golgi apparatus, and endoplasmic reticulum, the cytoplasm had starch grains and lipid droplets as inclusions. The A. ocellatum cells lacked chloroplasts. This study provides the first ultrastructural view of the cytoplasmic structure of the free-living stages of A. ocellatum.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":" ","pages":"e13067"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine structural features of the free-living stages of Amyloodinium ocellatum (Dinoflagellata, Thoracosphaeraceae): A marine fish ectoparasite.\",\"authors\":\"Zhicheng Li, Jingyu Zhuang, Jizhen Cao, Qing Han, Zhi Luo, Baotun Wang, Hebing Wang, Chuanfu Dong, Anxing Li\",\"doi\":\"10.1111/jeu.13067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyloodinium ocellatum is a protozoan parasite that causes amyloodiniosis in marine and brackish water fish, threatening global aquaculture. The present study investigates the morphology and ultrastructure of the free-living stages of A. ocellatum (tomont and dinospore) using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Dinospores measured 13.03-19.66 μm in length, 12.32-18.71 μm in width, and were laterally flattened. Dinospores had a transverse flagellum for propulsion and a longitudinal flagellum for direction control. The cyst wall had three distinct layers and included cellulose. The outer wall was coated with numerous bacteria. The orange-red speckled eyespot was observed all tomont developmental stages and in the dinospore of A. ocellatum. Tomonts proliferation required successive nuclear division, the formation of new cyst walls, and cytoplasmic segregation. The cytoplasm comprises mainly the matrix, organelles, and inclusions. The matrix was grainy and evenly distributed. In addition to organelles, including mitochondria with tubular cristae, Golgi apparatus, and endoplasmic reticulum, the cytoplasm had starch grains and lipid droplets as inclusions. The A. ocellatum cells lacked chloroplasts. This study provides the first ultrastructural view of the cytoplasmic structure of the free-living stages of A. ocellatum.</p>\",\"PeriodicalId\":15672,\"journal\":{\"name\":\"Journal of Eukaryotic Microbiology\",\"volume\":\" \",\"pages\":\"e13067\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Eukaryotic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jeu.13067\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Eukaryotic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jeu.13067","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

奥氏淀粉虫是一种原生动物寄生虫,会导致海水和咸水鱼患上淀粉虫病,威胁全球水产养殖业。本研究使用光学显微镜(LM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究了奥氏原虫自由生活阶段(绒毛和二孢子)的形态和超微结构。二孢子长 13.03-19.66 μm,宽 12.32-18.71 μm,侧面扁平。恐龙孢子有一根横向鞭毛用于推进,一根纵向鞭毛用于控制方向。囊壁有三层,包括纤维素。外壁有许多细菌。在所有通明体发育阶段和 A. ocellatum 的子孢子中都能观察到橙红色斑点眼斑。胞囊的增殖需要连续的核分裂、新囊壁的形成和细胞质的分离。细胞质主要由基质、细胞器和内含物组成。基质呈颗粒状,分布均匀。除了细胞器(包括具有管状嵴的线粒体、高尔基体和内质网)外,细胞质中还有淀粉粒和脂滴等内含物。A. ocellatum 细胞缺乏叶绿体。这项研究首次从超微结构角度揭示了自由生活阶段 A. ocellatum 的细胞质结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fine structural features of the free-living stages of Amyloodinium ocellatum (Dinoflagellata, Thoracosphaeraceae): A marine fish ectoparasite.

Amyloodinium ocellatum is a protozoan parasite that causes amyloodiniosis in marine and brackish water fish, threatening global aquaculture. The present study investigates the morphology and ultrastructure of the free-living stages of A. ocellatum (tomont and dinospore) using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Dinospores measured 13.03-19.66 μm in length, 12.32-18.71 μm in width, and were laterally flattened. Dinospores had a transverse flagellum for propulsion and a longitudinal flagellum for direction control. The cyst wall had three distinct layers and included cellulose. The outer wall was coated with numerous bacteria. The orange-red speckled eyespot was observed all tomont developmental stages and in the dinospore of A. ocellatum. Tomonts proliferation required successive nuclear division, the formation of new cyst walls, and cytoplasmic segregation. The cytoplasm comprises mainly the matrix, organelles, and inclusions. The matrix was grainy and evenly distributed. In addition to organelles, including mitochondria with tubular cristae, Golgi apparatus, and endoplasmic reticulum, the cytoplasm had starch grains and lipid droplets as inclusions. The A. ocellatum cells lacked chloroplasts. This study provides the first ultrastructural view of the cytoplasmic structure of the free-living stages of A. ocellatum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
4.50%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Journal of Eukaryotic Microbiology publishes original research on protists, including lower algae and fungi. Articles are published covering all aspects of these organisms, including their behavior, biochemistry, cell biology, chemotherapy, development, ecology, evolution, genetics, molecular biology, morphogenetics, parasitology, systematics, and ultrastructure.
期刊最新文献
Retention of blue-green cryptophyte organelles by Mesodinium rubrum and their effects on photophysiology and growth. Effect of protease inhibitors on the intraerythrocytic development of Babesia microti and Babesia duncani, the causative agents of human babesiosis. Fine structural features of the free-living stages of Amyloodinium ocellatum (Dinoflagellata, Thoracosphaeraceae): A marine fish ectoparasite. Broad-range necrophytophagy in the flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) and the underappreciated role of scavenging among protists. The identity of Centrodinium elongatum, type species of the dinoflagellate genus Centrodinium (Dinophyceae), and a review on the synonymy of allied species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1