{"title":"合作式大规模多输入多输出系统中下行链路的渐近分析","authors":"Itsik Bergel;Siddhartan Govindasamy","doi":"10.1109/OJCOMS.2024.3483176","DOIUrl":null,"url":null,"abstract":"We consider the downlink of a cooperative cellular communications system, where several base-stations around each mobile cooperate and perform zero-forcing to reduce the received interference at the mobile. We derive, for the first time, closed-form expressions for the asymptotic performance of the network as the number of antennas per base station grows large. These expressions capture the trade-offs between various system parameters, and characterize the joint effect of noise and interference (where either noise or interference is asymptotically dominant and where both are asymptotically relevant). The presented analysis is significantly more challenging than the uplink analysis due to the dependence between beamforming vectors of nearby base stations. This statistical dependence is handled by introducing novel bounds on marked shot-noise point processes with dependent marks, which are also useful in other contexts. The asymptotic results are verified using Monte Carlo simulations, which indicate that they are useful even when the number of antennas per base station is only moderately large. Based on these expressions, we present a novel power allocation algorithm that is asymptotically optimal while significantly reducing the coordination overhead between base stations.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"6972-6986"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10722858","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Analysis of the Downlink in Cooperative Massive MIMO Systems\",\"authors\":\"Itsik Bergel;Siddhartan Govindasamy\",\"doi\":\"10.1109/OJCOMS.2024.3483176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the downlink of a cooperative cellular communications system, where several base-stations around each mobile cooperate and perform zero-forcing to reduce the received interference at the mobile. We derive, for the first time, closed-form expressions for the asymptotic performance of the network as the number of antennas per base station grows large. These expressions capture the trade-offs between various system parameters, and characterize the joint effect of noise and interference (where either noise or interference is asymptotically dominant and where both are asymptotically relevant). The presented analysis is significantly more challenging than the uplink analysis due to the dependence between beamforming vectors of nearby base stations. This statistical dependence is handled by introducing novel bounds on marked shot-noise point processes with dependent marks, which are also useful in other contexts. The asymptotic results are verified using Monte Carlo simulations, which indicate that they are useful even when the number of antennas per base station is only moderately large. Based on these expressions, we present a novel power allocation algorithm that is asymptotically optimal while significantly reducing the coordination overhead between base stations.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":\"5 \",\"pages\":\"6972-6986\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10722858\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10722858/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10722858/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Asymptotic Analysis of the Downlink in Cooperative Massive MIMO Systems
We consider the downlink of a cooperative cellular communications system, where several base-stations around each mobile cooperate and perform zero-forcing to reduce the received interference at the mobile. We derive, for the first time, closed-form expressions for the asymptotic performance of the network as the number of antennas per base station grows large. These expressions capture the trade-offs between various system parameters, and characterize the joint effect of noise and interference (where either noise or interference is asymptotically dominant and where both are asymptotically relevant). The presented analysis is significantly more challenging than the uplink analysis due to the dependence between beamforming vectors of nearby base stations. This statistical dependence is handled by introducing novel bounds on marked shot-noise point processes with dependent marks, which are also useful in other contexts. The asymptotic results are verified using Monte Carlo simulations, which indicate that they are useful even when the number of antennas per base station is only moderately large. Based on these expressions, we present a novel power allocation algorithm that is asymptotically optimal while significantly reducing the coordination overhead between base stations.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.