不同来源的粉煤灰在碱活化体系中的反应性评估--通过废物利用推进环境建设

IF 7.4 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Construction and Building Materials Pub Date : 2024-11-12 DOI:10.1016/j.conbuildmat.2024.139118
Ke-yu Chen , Ri-yan Lan , Ting-quan He , Phirun Heng , Jin Xia
{"title":"不同来源的粉煤灰在碱活化体系中的反应性评估--通过废物利用推进环境建设","authors":"Ke-yu Chen ,&nbsp;Ri-yan Lan ,&nbsp;Ting-quan He ,&nbsp;Phirun Heng ,&nbsp;Jin Xia","doi":"10.1016/j.conbuildmat.2024.139118","DOIUrl":null,"url":null,"abstract":"<div><div>Fly ash, a byproduct of coal-fired thermal power stations, is among the most intricate artificially produced substances. The challenge of its suitable disposal has emerged as both an ecological issue and a squandering of potentially resources. Fly ash has good pozzolanic activity and contains reactive Al and Si components, it has the potential to dissolve under alkaline conditions to form a dense green gel, i.e. alkali activated binder. But, the widespread implementation of fly ash from different sources in generation of products is constrained by the heterogeneity of raw-material supply. In this work, physical performances, chemical-compositions, microstructures, element distribution, crystal structure, chemical-bonds, glassy content, as well as existence form of glassy-phases of eleven fly ashes sourced from different province in China were investigated via FESEM-EDS, XPS, XRD-Rietveld, FTIR, TEM NMR analysis. Then, a reactivity index of fly ash (<em>R</em> value) that concerned the effects of both initial state, particle morphology, internal composition was proposed. <em>R</em> value has been demonstrated to exhibit high predictive accuracy (<em>R</em><sup>2</sup> = 0.81–0.93) for predicting the strengths development of alkali activated products prepared with different activator modules, especially at early period. A further eleven literature datasets were utilized to validated against the accuracy of the predictions. <em>R</em> value facilitates an effective evaluation of fly ashes' fitness for fabricating high-strength alkali activated composites.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"454 ","pages":"Article 139118"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation on reactivity of fly ash from different sources in alkali activated system-progressing environmentally construction through waste utilization\",\"authors\":\"Ke-yu Chen ,&nbsp;Ri-yan Lan ,&nbsp;Ting-quan He ,&nbsp;Phirun Heng ,&nbsp;Jin Xia\",\"doi\":\"10.1016/j.conbuildmat.2024.139118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fly ash, a byproduct of coal-fired thermal power stations, is among the most intricate artificially produced substances. The challenge of its suitable disposal has emerged as both an ecological issue and a squandering of potentially resources. Fly ash has good pozzolanic activity and contains reactive Al and Si components, it has the potential to dissolve under alkaline conditions to form a dense green gel, i.e. alkali activated binder. But, the widespread implementation of fly ash from different sources in generation of products is constrained by the heterogeneity of raw-material supply. In this work, physical performances, chemical-compositions, microstructures, element distribution, crystal structure, chemical-bonds, glassy content, as well as existence form of glassy-phases of eleven fly ashes sourced from different province in China were investigated via FESEM-EDS, XPS, XRD-Rietveld, FTIR, TEM NMR analysis. Then, a reactivity index of fly ash (<em>R</em> value) that concerned the effects of both initial state, particle morphology, internal composition was proposed. <em>R</em> value has been demonstrated to exhibit high predictive accuracy (<em>R</em><sup>2</sup> = 0.81–0.93) for predicting the strengths development of alkali activated products prepared with different activator modules, especially at early period. A further eleven literature datasets were utilized to validated against the accuracy of the predictions. <em>R</em> value facilitates an effective evaluation of fly ashes' fitness for fabricating high-strength alkali activated composites.</div></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":\"454 \",\"pages\":\"Article 139118\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824042600\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824042600","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

粉煤灰是燃煤热电厂的副产品,是最复杂的人工生产物质之一。粉煤灰的适当处置既是一个生态问题,也是对潜在资源的浪费。粉煤灰具有良好的胶凝活性,含有活性 Al 和 Si 成分,在碱性条件下有可能溶解形成致密的绿色凝胶,即碱活化粘结剂。但是,由于原材料供应的不均匀性,广泛使用不同来源的粉煤灰生产产品受到了限制。在这项工作中,通过 FESEM-EDS、XPS、XRD-Rietveld、FTIR、TEM NMR 分析,研究了来自中国不同省份的 11 种粉煤灰的物理性能、化学成分、微观结构、元素分布、晶体结构、化学键、玻璃态含量以及玻璃态的存在形式。然后,提出了粉煤灰的反应性指数(R 值),该指数涉及初始状态、颗粒形态和内部组成的影响。事实证明,R 值在预测使用不同活化剂模块制备的碱活化产品的强度发展方面具有很高的预测准确性(R2 = 0.81-0.93),尤其是在早期阶段。另外还利用了 11 个文献数据集来验证预测的准确性。R 值有助于有效评估粉煤灰是否适合用于制造高强度碱活化复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation on reactivity of fly ash from different sources in alkali activated system-progressing environmentally construction through waste utilization
Fly ash, a byproduct of coal-fired thermal power stations, is among the most intricate artificially produced substances. The challenge of its suitable disposal has emerged as both an ecological issue and a squandering of potentially resources. Fly ash has good pozzolanic activity and contains reactive Al and Si components, it has the potential to dissolve under alkaline conditions to form a dense green gel, i.e. alkali activated binder. But, the widespread implementation of fly ash from different sources in generation of products is constrained by the heterogeneity of raw-material supply. In this work, physical performances, chemical-compositions, microstructures, element distribution, crystal structure, chemical-bonds, glassy content, as well as existence form of glassy-phases of eleven fly ashes sourced from different province in China were investigated via FESEM-EDS, XPS, XRD-Rietveld, FTIR, TEM NMR analysis. Then, a reactivity index of fly ash (R value) that concerned the effects of both initial state, particle morphology, internal composition was proposed. R value has been demonstrated to exhibit high predictive accuracy (R2 = 0.81–0.93) for predicting the strengths development of alkali activated products prepared with different activator modules, especially at early period. A further eleven literature datasets were utilized to validated against the accuracy of the predictions. R value facilitates an effective evaluation of fly ashes' fitness for fabricating high-strength alkali activated composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Construction and Building Materials
Construction and Building Materials 工程技术-材料科学:综合
CiteScore
13.80
自引率
21.60%
发文量
3632
审稿时长
82 days
期刊介绍: Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged. Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.
期刊最新文献
Durability against cyclic wetting-drying of cement-stabilized loess subgrade for railway in tropical semi-arid regions Lightweight, high-strength, thermal- and sound-insulating reed scraps/portland cement composite using extruded resin particles Concrete mix design: Optimizing recycled asphalt pavement in Portland cement concrete A multidisciplinary evaluation of mixtures of municipal solid waste incineration bottom ash and mine tailings for sustainable geotechnical solutions Dynamic splitting tensile properties of crumb rubber modified ultra-high performance engineered cementitious composites (UHP-ECC)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1