{"title":"预测性量化回归的推论","authors":"Alex Maynard , Katsumi Shimotsu , Nina Kuriyama","doi":"10.1016/j.jeconom.2024.105875","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies inference in predictive quantile regressions when the predictive regressor has a near-unit root. We derive asymptotic distributions for the quantile regression estimator and its heteroskedasticity and autocorrelation consistent (HAC) <span><math><mi>t</mi></math></span>-statistic in terms of functionals of Ornstein–Uhlenbeck processes. We then propose a switching-fully modified (FM) predictive test for quantile predictability. The proposed test employs an FM style correction with a Bonferroni bound for the local-to-unity parameter when the predictor has a near unit root. It switches to a standard predictive quantile regression test with a slightly conservative critical value when the largest root of the predictor lies in the stationary range. Simulations indicate that the test has a reliable size in small samples and good power. We employ this new methodology to test the ability of three commonly employed, highly persistent and endogenous lagged valuation regressors – the dividend price ratio, earnings price ratio, and book-to-market ratio – to predict the median, shoulders, and tails of the stock return distribution.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"245 1","pages":"Article 105875"},"PeriodicalIF":9.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference in predictive quantile regressions\",\"authors\":\"Alex Maynard , Katsumi Shimotsu , Nina Kuriyama\",\"doi\":\"10.1016/j.jeconom.2024.105875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies inference in predictive quantile regressions when the predictive regressor has a near-unit root. We derive asymptotic distributions for the quantile regression estimator and its heteroskedasticity and autocorrelation consistent (HAC) <span><math><mi>t</mi></math></span>-statistic in terms of functionals of Ornstein–Uhlenbeck processes. We then propose a switching-fully modified (FM) predictive test for quantile predictability. The proposed test employs an FM style correction with a Bonferroni bound for the local-to-unity parameter when the predictor has a near unit root. It switches to a standard predictive quantile regression test with a slightly conservative critical value when the largest root of the predictor lies in the stationary range. Simulations indicate that the test has a reliable size in small samples and good power. We employ this new methodology to test the ability of three commonly employed, highly persistent and endogenous lagged valuation regressors – the dividend price ratio, earnings price ratio, and book-to-market ratio – to predict the median, shoulders, and tails of the stock return distribution.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"245 1\",\"pages\":\"Article 105875\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624002203\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002203","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了预测性回归因子具有近单位根时的预测性量化回归推断。我们根据 Ornstein-Uhlenbeck 过程的函数推导出了量级回归估计器及其异方差和自相关一致(HAC)t 统计量的渐近分布。然后,我们提出了一种转换-完全修正(FM)的量子预测性检验。当预测因子具有近似单位根时,所提出的检验采用 FM 式修正,并对局部到单位参数进行 Bonferroni 约束。当预测因子的最大根位于静态范围内时,它将切换到标准预测性量化回归检验,临界值略显保守。模拟结果表明,该检验在小样本中具有可靠的规模和良好的功率。我们采用这一新方法检验了三个常用的、高度持久的内生滞后估值回归因子--股息价格比、盈利价格比和账面市值比--预测股票收益率分布的中位数、肩部和尾部的能力。
This paper studies inference in predictive quantile regressions when the predictive regressor has a near-unit root. We derive asymptotic distributions for the quantile regression estimator and its heteroskedasticity and autocorrelation consistent (HAC) -statistic in terms of functionals of Ornstein–Uhlenbeck processes. We then propose a switching-fully modified (FM) predictive test for quantile predictability. The proposed test employs an FM style correction with a Bonferroni bound for the local-to-unity parameter when the predictor has a near unit root. It switches to a standard predictive quantile regression test with a slightly conservative critical value when the largest root of the predictor lies in the stationary range. Simulations indicate that the test has a reliable size in small samples and good power. We employ this new methodology to test the ability of three commonly employed, highly persistent and endogenous lagged valuation regressors – the dividend price ratio, earnings price ratio, and book-to-market ratio – to predict the median, shoulders, and tails of the stock return distribution.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.