Yasha Li , Guojiang Xiong , Seyedali Mirjalili , Ali Wagdy Mohamed
{"title":"利用基于多源引导的教学优化,优化光伏电池和模块的等效电路模型","authors":"Yasha Li , Guojiang Xiong , Seyedali Mirjalili , Ali Wagdy Mohamed","doi":"10.1016/j.asej.2024.102988","DOIUrl":null,"url":null,"abstract":"<div><div>The complexity of equivalent circuit models of photovoltaic cells and modules poses a difficult task to the parameter extraction methods. Teaching-learning-based optimization (TLBO) is a potent metaheuristic-based parameter extraction method, but it suffers from insufficient precision and low dependability. This study presented a multi-source guided TLBO through improving its two optimization phases. A multi-source guided approach with one-to-one and step-by-step teaching strategies was designed to guide different learners in the teacher phase. Besides, different strategies based on multiple learners were introduced for learners with different knowledge reserves to strengthen information exchanging. With the improvements, it is advantageous to lessen the likelihood of hitting a local optimum and thereby the global convergence can be accelerated. The resultant method was verified on single diode model, double diode model, and three additional modules. The findings demonstrate that it obtained better solutions in precision and dependability, and stood out from the crowd of algorithms.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"15 11","pages":"Article 102988"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal equivalent circuit models for photovoltaic cells and modules using multi-source guided teaching–learning-based optimization\",\"authors\":\"Yasha Li , Guojiang Xiong , Seyedali Mirjalili , Ali Wagdy Mohamed\",\"doi\":\"10.1016/j.asej.2024.102988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The complexity of equivalent circuit models of photovoltaic cells and modules poses a difficult task to the parameter extraction methods. Teaching-learning-based optimization (TLBO) is a potent metaheuristic-based parameter extraction method, but it suffers from insufficient precision and low dependability. This study presented a multi-source guided TLBO through improving its two optimization phases. A multi-source guided approach with one-to-one and step-by-step teaching strategies was designed to guide different learners in the teacher phase. Besides, different strategies based on multiple learners were introduced for learners with different knowledge reserves to strengthen information exchanging. With the improvements, it is advantageous to lessen the likelihood of hitting a local optimum and thereby the global convergence can be accelerated. The resultant method was verified on single diode model, double diode model, and three additional modules. The findings demonstrate that it obtained better solutions in precision and dependability, and stood out from the crowd of algorithms.</div></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":\"15 11\",\"pages\":\"Article 102988\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2090447924003630\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924003630","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimal equivalent circuit models for photovoltaic cells and modules using multi-source guided teaching–learning-based optimization
The complexity of equivalent circuit models of photovoltaic cells and modules poses a difficult task to the parameter extraction methods. Teaching-learning-based optimization (TLBO) is a potent metaheuristic-based parameter extraction method, but it suffers from insufficient precision and low dependability. This study presented a multi-source guided TLBO through improving its two optimization phases. A multi-source guided approach with one-to-one and step-by-step teaching strategies was designed to guide different learners in the teacher phase. Besides, different strategies based on multiple learners were introduced for learners with different knowledge reserves to strengthen information exchanging. With the improvements, it is advantageous to lessen the likelihood of hitting a local optimum and thereby the global convergence can be accelerated. The resultant method was verified on single diode model, double diode model, and three additional modules. The findings demonstrate that it obtained better solutions in precision and dependability, and stood out from the crowd of algorithms.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.