利用海洋颜色数据绘制全球海面硝酸盐动态图

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Dynamics of Atmospheres and Oceans Pub Date : 2024-11-09 DOI:10.1016/j.dynatmoce.2024.101507
Ibrahim Shaik , P.V. Nagamani , Yash Manmode , Sandesh Yadav , Venkatesh Degala , G. Srinivasa Rao
{"title":"利用海洋颜色数据绘制全球海面硝酸盐动态图","authors":"Ibrahim Shaik ,&nbsp;P.V. Nagamani ,&nbsp;Yash Manmode ,&nbsp;Sandesh Yadav ,&nbsp;Venkatesh Degala ,&nbsp;G. Srinivasa Rao","doi":"10.1016/j.dynatmoce.2024.101507","DOIUrl":null,"url":null,"abstract":"<div><div>Sea Surface Nitrate (SSN) is crucial for assessing phytoplankton growth and the initiation of new production within the marine environment. Precise estimation of SSN concentrations plays a significant role in understanding marine ecosystem dynamics. In this study, the deep learning model TabularNet (TabNet) was assessed using quality-controlled in-situ measurements from the Global Ocean Data Analysis Project (GLODAP). These measurements included Sea Surface Temperature (SST), Sea Surface Salinity (SSS), Chlorophyll-a concentration (Chla), and nitrate, collected from various regions of the global ocean to achieve accurate SSN estimation. The TabNet model demonstrated superior performance and robustness, achieving accurate global SSN estimations using satellite data. The model yielded a root mean square error (RMSE) of 2.02 μmol/kg, a mean bias (MB) of −0.32 μmol/kg, a mean ratio (MR) of 0.78, and a coefficient of determination (R<sup>2</sup>) of 0.96. Furthermore, a comparative analysis of TabNet against Random Forest (RF) and Feed Forward Neural Network (FFNN) models was conducted. The results highlighted the robust performance of TabNet in accurately estimating SSN dynamics. TabNet effectively utilized in-situ and satellite data, providing accurate SSN dynamics. This technique offers valuable insights for monitoring global surface ocean nitrate dynamics, enhancing our ability to understand and manage marine ecosystems.</div></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"108 ","pages":"Article 101507"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping the dynamics of global sea surface nitrate using ocean color data\",\"authors\":\"Ibrahim Shaik ,&nbsp;P.V. Nagamani ,&nbsp;Yash Manmode ,&nbsp;Sandesh Yadav ,&nbsp;Venkatesh Degala ,&nbsp;G. Srinivasa Rao\",\"doi\":\"10.1016/j.dynatmoce.2024.101507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sea Surface Nitrate (SSN) is crucial for assessing phytoplankton growth and the initiation of new production within the marine environment. Precise estimation of SSN concentrations plays a significant role in understanding marine ecosystem dynamics. In this study, the deep learning model TabularNet (TabNet) was assessed using quality-controlled in-situ measurements from the Global Ocean Data Analysis Project (GLODAP). These measurements included Sea Surface Temperature (SST), Sea Surface Salinity (SSS), Chlorophyll-a concentration (Chla), and nitrate, collected from various regions of the global ocean to achieve accurate SSN estimation. The TabNet model demonstrated superior performance and robustness, achieving accurate global SSN estimations using satellite data. The model yielded a root mean square error (RMSE) of 2.02 μmol/kg, a mean bias (MB) of −0.32 μmol/kg, a mean ratio (MR) of 0.78, and a coefficient of determination (R<sup>2</sup>) of 0.96. Furthermore, a comparative analysis of TabNet against Random Forest (RF) and Feed Forward Neural Network (FFNN) models was conducted. The results highlighted the robust performance of TabNet in accurately estimating SSN dynamics. TabNet effectively utilized in-situ and satellite data, providing accurate SSN dynamics. This technique offers valuable insights for monitoring global surface ocean nitrate dynamics, enhancing our ability to understand and manage marine ecosystems.</div></div>\",\"PeriodicalId\":50563,\"journal\":{\"name\":\"Dynamics of Atmospheres and Oceans\",\"volume\":\"108 \",\"pages\":\"Article 101507\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Atmospheres and Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377026524000769\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026524000769","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

海面硝酸盐(SSN)对于评估海洋环境中浮游植物的生长和新产量的启动至关重要。对 SSN 浓度的精确估算对了解海洋生态系统动态起着重要作用。在这项研究中,利用全球海洋数据分析项目(GLODAP)中质量受控的现场测量数据,对深度学习模型 TabularNet(TabNet)进行了评估。这些测量数据包括海面温度 (SST)、海面盐度 (SSS)、叶绿素 a 浓度 (Chla) 和硝酸盐,采集自全球海洋的不同区域,以实现精确的 SSN 估算。TabNet 模型表现出卓越的性能和鲁棒性,利用卫星数据实现了精确的全球 SSN 估计。该模型的均方根误差 (RMSE) 为 2.02 μmol/kg,平均偏差 (MB) 为 -0.32 μmol/kg,平均比率 (MR) 为 0.78,判定系数 (R2) 为 0.96。此外,还对 TabNet 与随机森林 (RF) 和前馈神经网络 (FFNN) 模型进行了比较分析。结果凸显了 TabNet 在准确估计 SSN 动态方面的强大性能。TabNet 有效地利用了现场和卫星数据,提供了准确的 SSN 动态。这项技术为监测全球表层海洋硝酸盐动态提供了宝贵的见解,提高了我们了解和管理海洋生态系统的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mapping the dynamics of global sea surface nitrate using ocean color data
Sea Surface Nitrate (SSN) is crucial for assessing phytoplankton growth and the initiation of new production within the marine environment. Precise estimation of SSN concentrations plays a significant role in understanding marine ecosystem dynamics. In this study, the deep learning model TabularNet (TabNet) was assessed using quality-controlled in-situ measurements from the Global Ocean Data Analysis Project (GLODAP). These measurements included Sea Surface Temperature (SST), Sea Surface Salinity (SSS), Chlorophyll-a concentration (Chla), and nitrate, collected from various regions of the global ocean to achieve accurate SSN estimation. The TabNet model demonstrated superior performance and robustness, achieving accurate global SSN estimations using satellite data. The model yielded a root mean square error (RMSE) of 2.02 μmol/kg, a mean bias (MB) of −0.32 μmol/kg, a mean ratio (MR) of 0.78, and a coefficient of determination (R2) of 0.96. Furthermore, a comparative analysis of TabNet against Random Forest (RF) and Feed Forward Neural Network (FFNN) models was conducted. The results highlighted the robust performance of TabNet in accurately estimating SSN dynamics. TabNet effectively utilized in-situ and satellite data, providing accurate SSN dynamics. This technique offers valuable insights for monitoring global surface ocean nitrate dynamics, enhancing our ability to understand and manage marine ecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dynamics of Atmospheres and Oceans
Dynamics of Atmospheres and Oceans 地学-地球化学与地球物理
CiteScore
3.10
自引率
5.90%
发文量
43
审稿时长
>12 weeks
期刊介绍: Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate. Authors are invited to submit articles, short contributions or scholarly reviews in the following areas: •Dynamic meteorology •Physical oceanography •Geophysical fluid dynamics •Climate variability and climate change •Atmosphere-ocean-biosphere-cryosphere interactions •Prediction and predictability •Scale interactions Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.
期刊最新文献
Editorial Board Corrigendum to “Effects of equatorially-confined shear flow on MRG and Rossby waves” [Dyn. Atmos. Oceans 100 (2022) 101331] Multi-timescale variability of tropical convection in the Indo-western Pacific Ocean Impact of boundary layer parameterizations on simulated seasonal meteorology over North-East India Mapping the dynamics of global sea surface nitrate using ocean color data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1