利用混合小波去噪-优化-机器学习对开关设备绝缘材料中的局部放电进行去噪处理

IF 6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Ain Shams Engineering Journal Pub Date : 2024-11-01 DOI:10.1016/j.asej.2024.103032
Shiyu Chen, Hazlee Azil Illias, Jee Keen Raymond Wong, Nurulafiqah Nadzirah Mansor
{"title":"利用混合小波去噪-优化-机器学习对开关设备绝缘材料中的局部放电进行去噪处理","authors":"Shiyu Chen,&nbsp;Hazlee Azil Illias,&nbsp;Jee Keen Raymond Wong,&nbsp;Nurulafiqah Nadzirah Mansor","doi":"10.1016/j.asej.2024.103032","DOIUrl":null,"url":null,"abstract":"<div><div>Partial discharge (PD) diagnosis is essential for assessing the insulation status of power equipment, but onsite interferences often contaminate PD signals with noise, impacting diagnostic accuracy. This work proposes an adaptive wavelet threshold denoising technique, where the PD signal is first decomposed into wavelet coefficients using discrete wavelet transform (DWT). Traditional threshold selection methods rely on experience and statistical factors, challenging optimal threshold determination. To address this issue, Particle Swarm Optimization (PSO), Energy Valley Optimization (EVO) and Subtraction Average Based Optimization (SABO) are applied to achieve the best adaptive threshold. The proposed method is evaluated against traditional sqtwolog-based threshold methods using root mean square error (RMSE) and the recognition accuracy of classifiers, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Gradient Boosting Decision Trees (GBDT) and K-Nearest Neighbours (KNN). The results show that the proposed technique can find the best threshold and increase the recognition accuracy by 19% compared to the traditional method, demonstrating its superior performance.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"15 11","pages":"Article 103032"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denoising of partial discharges in switchgear insulation material using hybrid wavelet denoising-optimization-machine learning\",\"authors\":\"Shiyu Chen,&nbsp;Hazlee Azil Illias,&nbsp;Jee Keen Raymond Wong,&nbsp;Nurulafiqah Nadzirah Mansor\",\"doi\":\"10.1016/j.asej.2024.103032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Partial discharge (PD) diagnosis is essential for assessing the insulation status of power equipment, but onsite interferences often contaminate PD signals with noise, impacting diagnostic accuracy. This work proposes an adaptive wavelet threshold denoising technique, where the PD signal is first decomposed into wavelet coefficients using discrete wavelet transform (DWT). Traditional threshold selection methods rely on experience and statistical factors, challenging optimal threshold determination. To address this issue, Particle Swarm Optimization (PSO), Energy Valley Optimization (EVO) and Subtraction Average Based Optimization (SABO) are applied to achieve the best adaptive threshold. The proposed method is evaluated against traditional sqtwolog-based threshold methods using root mean square error (RMSE) and the recognition accuracy of classifiers, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Gradient Boosting Decision Trees (GBDT) and K-Nearest Neighbours (KNN). The results show that the proposed technique can find the best threshold and increase the recognition accuracy by 19% compared to the traditional method, demonstrating its superior performance.</div></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":\"15 11\",\"pages\":\"Article 103032\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2090447924004076\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924004076","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

局部放电(PD)诊断对于评估电力设备的绝缘状态至关重要,但现场干扰往往会使 PD 信号受到噪声污染,从而影响诊断的准确性。这项工作提出了一种自适应小波阈值去噪技术,首先使用离散小波变换(DWT)将 PD 信号分解为小波系数。传统的阈值选择方法依赖于经验和统计因素,对最佳阈值的确定提出了挑战。为解决这一问题,采用了粒子群优化(PSO)、能量谷优化(EVO)和基于减法平均的优化(SABO)来实现最佳自适应阈值。利用均方根误差 (RMSE) 和分类器的识别准确率,包括人工神经网络 (ANN)、支持向量机 (SVM)、梯度提升决策树 (GBDT) 和 K-Nearest Neighbours (KNN),对所提出的方法与传统的基于 sqtwolog 的阈值方法进行了评估。结果表明,与传统方法相比,所提出的技术能找到最佳阈值,并将识别准确率提高了 19%,显示了其卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoising of partial discharges in switchgear insulation material using hybrid wavelet denoising-optimization-machine learning
Partial discharge (PD) diagnosis is essential for assessing the insulation status of power equipment, but onsite interferences often contaminate PD signals with noise, impacting diagnostic accuracy. This work proposes an adaptive wavelet threshold denoising technique, where the PD signal is first decomposed into wavelet coefficients using discrete wavelet transform (DWT). Traditional threshold selection methods rely on experience and statistical factors, challenging optimal threshold determination. To address this issue, Particle Swarm Optimization (PSO), Energy Valley Optimization (EVO) and Subtraction Average Based Optimization (SABO) are applied to achieve the best adaptive threshold. The proposed method is evaluated against traditional sqtwolog-based threshold methods using root mean square error (RMSE) and the recognition accuracy of classifiers, including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Gradient Boosting Decision Trees (GBDT) and K-Nearest Neighbours (KNN). The results show that the proposed technique can find the best threshold and increase the recognition accuracy by 19% compared to the traditional method, demonstrating its superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ain Shams Engineering Journal
Ain Shams Engineering Journal Engineering-General Engineering
CiteScore
10.80
自引率
13.30%
发文量
441
审稿时长
49 weeks
期刊介绍: in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance. Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.
期刊最新文献
Editorial Board Study on the intermediate crack-induced debonding strain of FRP-strengthened concrete members using the updated BP neural network An Improved digital multi-resonant controller for 3 ϕ grid-tied and standalone PV system under balanced and unbalanced conditions Common architectural characteristics of traditional courtyard houses in Erbil city Analysis of Monte-Carlo collision method with argon and helium background gases at different RF-powers and pressures in ELTRAP device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1