Yuhang Liu , Zhenghua Huang , Qiong Song , Kun Bai
{"title":"PV-YOLO:基于改进型 YOLOv8 的轻量级行人和车辆检测模型","authors":"Yuhang Liu , Zhenghua Huang , Qiong Song , Kun Bai","doi":"10.1016/j.dsp.2024.104857","DOIUrl":null,"url":null,"abstract":"<div><div>With the frequent occurrence of urban traffic accidents, fast and accurate detection of pedestrian and vehicle targets has become one of the key technologies for intelligent assisted driving systems. To meet the efficiency and lightweight requirements of smart devices, this paper proposes a lightweight pedestrian and vehicle detection model based on the YOLOv8n model, named PV-YOLO. In the proposed model, receptive-field attention convolution (RFAConv) serves as the backbone network because of its target feature extraction ability, and the neck utilizes the bidirectional feature pyramid network (BiFPN) instead of the original path aggregation network (PANet) to simplify the feature fusion process. Moreover, a lightweight detection head is introduced to reduce the computational burden and improve the overall detection accuracy. In addition, a small target detection layer is designed to improve the accuracy for small distant targets. Finally, to reduce the computational burden further, the lightweight C2f module is utilized to compress the model. The experimental results on the BDD100K and KITTI datasets demonstrate that the proposed PV-YOLO can achieve higher detection accuracy than YOLOv8n and other baseline methods with less model complexity.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104857"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8\",\"authors\":\"Yuhang Liu , Zhenghua Huang , Qiong Song , Kun Bai\",\"doi\":\"10.1016/j.dsp.2024.104857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the frequent occurrence of urban traffic accidents, fast and accurate detection of pedestrian and vehicle targets has become one of the key technologies for intelligent assisted driving systems. To meet the efficiency and lightweight requirements of smart devices, this paper proposes a lightweight pedestrian and vehicle detection model based on the YOLOv8n model, named PV-YOLO. In the proposed model, receptive-field attention convolution (RFAConv) serves as the backbone network because of its target feature extraction ability, and the neck utilizes the bidirectional feature pyramid network (BiFPN) instead of the original path aggregation network (PANet) to simplify the feature fusion process. Moreover, a lightweight detection head is introduced to reduce the computational burden and improve the overall detection accuracy. In addition, a small target detection layer is designed to improve the accuracy for small distant targets. Finally, to reduce the computational burden further, the lightweight C2f module is utilized to compress the model. The experimental results on the BDD100K and KITTI datasets demonstrate that the proposed PV-YOLO can achieve higher detection accuracy than YOLOv8n and other baseline methods with less model complexity.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"156 \",\"pages\":\"Article 104857\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200424004822\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004822","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8
With the frequent occurrence of urban traffic accidents, fast and accurate detection of pedestrian and vehicle targets has become one of the key technologies for intelligent assisted driving systems. To meet the efficiency and lightweight requirements of smart devices, this paper proposes a lightweight pedestrian and vehicle detection model based on the YOLOv8n model, named PV-YOLO. In the proposed model, receptive-field attention convolution (RFAConv) serves as the backbone network because of its target feature extraction ability, and the neck utilizes the bidirectional feature pyramid network (BiFPN) instead of the original path aggregation network (PANet) to simplify the feature fusion process. Moreover, a lightweight detection head is introduced to reduce the computational burden and improve the overall detection accuracy. In addition, a small target detection layer is designed to improve the accuracy for small distant targets. Finally, to reduce the computational burden further, the lightweight C2f module is utilized to compress the model. The experimental results on the BDD100K and KITTI datasets demonstrate that the proposed PV-YOLO can achieve higher detection accuracy than YOLOv8n and other baseline methods with less model complexity.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,