{"title":"使用基于修改后 CBAM 的网络,为高光谱图像分类自适应选择光谱空间特征","authors":"He Fu , Cailing Wang , Zhanlong Chen","doi":"10.1016/j.neucom.2024.128877","DOIUrl":null,"url":null,"abstract":"<div><div>Convolutional neural networks (CNNs) have demonstrated strong capabilities in hyperspectral image (HSI) classification. However, it is still a challenge to adaptively adjust the size of the receptive fields (RFs) of CNNs base on the information of different scales in HSI to achieve adaptive selection of spectral–spatial features. In the paper, we modify the convolutional block attention module (CBAM) and propose a modified-CBAM-based network (MCNet) to adaptively select spectral–spatial features for HSI classification. In particular, the modified CBAM not only enables the model to adjust its RF size according to the information of different scales in HSI, but also enables the model to achieve a joint focus on important spectral and spatial features. This is very important to adaptively select more descriptive and discriminative spectral–spatial features. The proposed MCNet is compared with currently popular methods on Indian Pines, Kennedy Space Center, University of Pavia, and Botswana HSI datasets. The results show that MCNet has better classification results than other methods on overall accuracy, average accuracy, and Kappa.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"615 ","pages":"Article 128877"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network\",\"authors\":\"He Fu , Cailing Wang , Zhanlong Chen\",\"doi\":\"10.1016/j.neucom.2024.128877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Convolutional neural networks (CNNs) have demonstrated strong capabilities in hyperspectral image (HSI) classification. However, it is still a challenge to adaptively adjust the size of the receptive fields (RFs) of CNNs base on the information of different scales in HSI to achieve adaptive selection of spectral–spatial features. In the paper, we modify the convolutional block attention module (CBAM) and propose a modified-CBAM-based network (MCNet) to adaptively select spectral–spatial features for HSI classification. In particular, the modified CBAM not only enables the model to adjust its RF size according to the information of different scales in HSI, but also enables the model to achieve a joint focus on important spectral and spatial features. This is very important to adaptively select more descriptive and discriminative spectral–spatial features. The proposed MCNet is compared with currently popular methods on Indian Pines, Kennedy Space Center, University of Pavia, and Botswana HSI datasets. The results show that MCNet has better classification results than other methods on overall accuracy, average accuracy, and Kappa.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"615 \",\"pages\":\"Article 128877\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224016485\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016485","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Adaptive selection of spectral–spatial features for hyperspectral image classification using a modified-CBAM-based network
Convolutional neural networks (CNNs) have demonstrated strong capabilities in hyperspectral image (HSI) classification. However, it is still a challenge to adaptively adjust the size of the receptive fields (RFs) of CNNs base on the information of different scales in HSI to achieve adaptive selection of spectral–spatial features. In the paper, we modify the convolutional block attention module (CBAM) and propose a modified-CBAM-based network (MCNet) to adaptively select spectral–spatial features for HSI classification. In particular, the modified CBAM not only enables the model to adjust its RF size according to the information of different scales in HSI, but also enables the model to achieve a joint focus on important spectral and spatial features. This is very important to adaptively select more descriptive and discriminative spectral–spatial features. The proposed MCNet is compared with currently popular methods on Indian Pines, Kennedy Space Center, University of Pavia, and Botswana HSI datasets. The results show that MCNet has better classification results than other methods on overall accuracy, average accuracy, and Kappa.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.