{"title":"岩盐结构中过渡金属(铬、铁)掺杂氮化铝的理论研究:关于物理性质的 DFT 研究","authors":"Fatima Elhamra , Mourad Rougab , Ahmed Gueddouh","doi":"10.1016/j.jpcs.2024.112442","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents first-principles computations to explore the structural, electronic, optical, elastic, vibrational, and thermodynamic properties of Aluminum Nitride (AlN) doped with the transition metals Chromium (Cr) and Iron (Fe) in the rocksalt structure. Using spin-polarized density functional theory (DFT) within the CASTEP code, we applied GGA-PBE, GGA + U, and HSE06 approximations for exchange-correlation functions. Our results reveal that Cr doping transforms AlN into a dilute magnetic semiconductor (DMS), while Fe doping induces a transition to a metallic state. Both Al<sub>0</sub>.₇₅Cr₀.₂₅N and Al₀.₇₅Fe₀.₂₅N exhibit strong covalent bonding, contributing to enhanced hardness. The substantial increase in static dielectric constant and refractive index suggests strong optical responses. Furthermore, our analysis confirms the mechanical and dynamic stability of these compounds. Al₀.₇₅Cr₀.₂₅N is a promising candidate for electronic and spintronic applications, whereas Al₀.₇₅Fe₀.₂₅N, with its high conductivity, is well-suited for magnetic storage devices and electrical contacts. Our findings for AlN are consistent with prior theoretical and experimental data, while the results for Al₀.₇₅Cr₀.₂₅N and Al₀.₇₅Fe₀.₂₅N offer novel insights for future research.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112442"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical investigation of transition metal (Cr, Fe)-Doped AlN in a rocksalt structure: A DFT study on physical properties\",\"authors\":\"Fatima Elhamra , Mourad Rougab , Ahmed Gueddouh\",\"doi\":\"10.1016/j.jpcs.2024.112442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents first-principles computations to explore the structural, electronic, optical, elastic, vibrational, and thermodynamic properties of Aluminum Nitride (AlN) doped with the transition metals Chromium (Cr) and Iron (Fe) in the rocksalt structure. Using spin-polarized density functional theory (DFT) within the CASTEP code, we applied GGA-PBE, GGA + U, and HSE06 approximations for exchange-correlation functions. Our results reveal that Cr doping transforms AlN into a dilute magnetic semiconductor (DMS), while Fe doping induces a transition to a metallic state. Both Al<sub>0</sub>.₇₅Cr₀.₂₅N and Al₀.₇₅Fe₀.₂₅N exhibit strong covalent bonding, contributing to enhanced hardness. The substantial increase in static dielectric constant and refractive index suggests strong optical responses. Furthermore, our analysis confirms the mechanical and dynamic stability of these compounds. Al₀.₇₅Cr₀.₂₅N is a promising candidate for electronic and spintronic applications, whereas Al₀.₇₅Fe₀.₂₅N, with its high conductivity, is well-suited for magnetic storage devices and electrical contacts. Our findings for AlN are consistent with prior theoretical and experimental data, while the results for Al₀.₇₅Cr₀.₂₅N and Al₀.₇₅Fe₀.₂₅N offer novel insights for future research.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"197 \",\"pages\":\"Article 112442\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005778\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005778","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Theoretical investigation of transition metal (Cr, Fe)-Doped AlN in a rocksalt structure: A DFT study on physical properties
This study presents first-principles computations to explore the structural, electronic, optical, elastic, vibrational, and thermodynamic properties of Aluminum Nitride (AlN) doped with the transition metals Chromium (Cr) and Iron (Fe) in the rocksalt structure. Using spin-polarized density functional theory (DFT) within the CASTEP code, we applied GGA-PBE, GGA + U, and HSE06 approximations for exchange-correlation functions. Our results reveal that Cr doping transforms AlN into a dilute magnetic semiconductor (DMS), while Fe doping induces a transition to a metallic state. Both Al0.₇₅Cr₀.₂₅N and Al₀.₇₅Fe₀.₂₅N exhibit strong covalent bonding, contributing to enhanced hardness. The substantial increase in static dielectric constant and refractive index suggests strong optical responses. Furthermore, our analysis confirms the mechanical and dynamic stability of these compounds. Al₀.₇₅Cr₀.₂₅N is a promising candidate for electronic and spintronic applications, whereas Al₀.₇₅Fe₀.₂₅N, with its high conductivity, is well-suited for magnetic storage devices and electrical contacts. Our findings for AlN are consistent with prior theoretical and experimental data, while the results for Al₀.₇₅Cr₀.₂₅N and Al₀.₇₅Fe₀.₂₅N offer novel insights for future research.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.