一种具有高度可逆 Fe3+/Fe4+ 氧化还原作用的层状结构高熵氧化物,可作为钠离子电池的先进阴极材料

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-16 DOI:10.1016/j.jpowsour.2024.235735
Jili Yue , Feng Xiong , Zulipiya Shadike , Xiangwen Gao , Jun Chen , Liquan Pi , Yi Yuan , Baihua Qu , Paul Adamson , Lu Ma , Qian Li , Peter G. Bruce
{"title":"一种具有高度可逆 Fe3+/Fe4+ 氧化还原作用的层状结构高熵氧化物,可作为钠离子电池的先进阴极材料","authors":"Jili Yue ,&nbsp;Feng Xiong ,&nbsp;Zulipiya Shadike ,&nbsp;Xiangwen Gao ,&nbsp;Jun Chen ,&nbsp;Liquan Pi ,&nbsp;Yi Yuan ,&nbsp;Baihua Qu ,&nbsp;Paul Adamson ,&nbsp;Lu Ma ,&nbsp;Qian Li ,&nbsp;Peter G. Bruce","doi":"10.1016/j.jpowsour.2024.235735","DOIUrl":null,"url":null,"abstract":"<div><div>Reversible redox center is essential for long-life electrode materials. Iron is an earth abundant element, in lithium-ion batteries, highly reversible Fe<sup>2+</sup>/Fe<sup>3+</sup> redox in LiFePO<sub>4</sub> has play important role as redox center, Fe<sup>3+</sup>/Fe<sup>4+</sup> redox in lithium layer-structured oxides display poor electrochemical performance. In sodium ion batteries, Fe<sup>3+</sup>/Fe<sup>4+</sup> redox in sodium layer-structured oxides are active, while the cycle performance of Fe-contained sodium layer-structured oxide cathode need to be further improved. Herein, A pure-phase layer-structured high entropy oxide O3-Na(MgCu)<sub>1/12</sub>(NiCoFeMnTi)<sub>1/6</sub>O<sub>2</sub> is synthesized and investigated as cathode for sodium ion battery. A reversible phase-transition takes place during the charge/discharge process. Particularly, highly reversible Fe<sup>3+</sup>/Fe<sup>4+</sup> redox is revealed by X-ray absorption fine structure (XAFS). The as-synthesized high entropy oxide delivers a discharge capacity of 146.6 mAh g<sup>−1</sup> at 10 mA g<sup>−1</sup>, and can retain 83.2 % of capacity after 700 cycles at 100 mA g<sup>−1</sup> between 2.0 and 4.1 V vs. Na<sup>+</sup>/Na. In this work, Fe K-edge of Fe<sup>3+</sup>/Fe<sup>4+</sup> redox displays rigid shift, HEO-MgCuNi could be a platform to investigate the fundamental property of Fe<sup>3+</sup>/Fe<sup>4+</sup> redox.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"627 ","pages":"Article 235735"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A layer-structured high entropy oxide with highly reversible Fe3+/Fe4+ redox as advanced cathode material for sodium ion batteries\",\"authors\":\"Jili Yue ,&nbsp;Feng Xiong ,&nbsp;Zulipiya Shadike ,&nbsp;Xiangwen Gao ,&nbsp;Jun Chen ,&nbsp;Liquan Pi ,&nbsp;Yi Yuan ,&nbsp;Baihua Qu ,&nbsp;Paul Adamson ,&nbsp;Lu Ma ,&nbsp;Qian Li ,&nbsp;Peter G. Bruce\",\"doi\":\"10.1016/j.jpowsour.2024.235735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reversible redox center is essential for long-life electrode materials. Iron is an earth abundant element, in lithium-ion batteries, highly reversible Fe<sup>2+</sup>/Fe<sup>3+</sup> redox in LiFePO<sub>4</sub> has play important role as redox center, Fe<sup>3+</sup>/Fe<sup>4+</sup> redox in lithium layer-structured oxides display poor electrochemical performance. In sodium ion batteries, Fe<sup>3+</sup>/Fe<sup>4+</sup> redox in sodium layer-structured oxides are active, while the cycle performance of Fe-contained sodium layer-structured oxide cathode need to be further improved. Herein, A pure-phase layer-structured high entropy oxide O3-Na(MgCu)<sub>1/12</sub>(NiCoFeMnTi)<sub>1/6</sub>O<sub>2</sub> is synthesized and investigated as cathode for sodium ion battery. A reversible phase-transition takes place during the charge/discharge process. Particularly, highly reversible Fe<sup>3+</sup>/Fe<sup>4+</sup> redox is revealed by X-ray absorption fine structure (XAFS). The as-synthesized high entropy oxide delivers a discharge capacity of 146.6 mAh g<sup>−1</sup> at 10 mA g<sup>−1</sup>, and can retain 83.2 % of capacity after 700 cycles at 100 mA g<sup>−1</sup> between 2.0 and 4.1 V vs. Na<sup>+</sup>/Na. In this work, Fe K-edge of Fe<sup>3+</sup>/Fe<sup>4+</sup> redox displays rigid shift, HEO-MgCuNi could be a platform to investigate the fundamental property of Fe<sup>3+</sup>/Fe<sup>4+</sup> redox.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"627 \",\"pages\":\"Article 235735\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324016872\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324016872","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可逆氧化还原中心对长寿命电极材料至关重要。铁是地球上丰富的元素,在锂离子电池中,LiFePO4 中高度可逆的 Fe2+/Fe3+ 氧化还原作为氧化还原中心发挥着重要作用,而锂层结构氧化物中的 Fe3+/Fe4+ 氧化还原则显示出较差的电化学性能。在钠离子电池中,钠层结构氧化物中的 Fe3+/Fe4+ 氧化还原作用活跃,而含铁钠层结构氧化物正极的循环性能有待进一步提高。本文合成了一种纯相层结构高熵氧化物 O3-Na(MgCu)1/12(NiCoFeMnTi)1/6O2,并将其作为钠离子电池正极进行了研究。在充放电过程中发生了可逆相变。特别是,X 射线吸收精细结构(XAFS)揭示了高度可逆的 Fe3+/Fe4+ 氧化还原。合成的高熵氧化物在 10 mA g-1 下的放电容量为 146.6 mAh g-1,并且在 2.0 至 4.1 V 之间以 100 mA g-1 对 Na+/Na 进行 700 次循环后仍能保持 83.2% 的容量。在这项工作中,Fe3+/Fe4+ 氧化还原的 Fe K 边出现了刚性位移,HEO-MgCuNi 可作为研究 Fe3+/Fe4+ 氧化还原基本特性的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A layer-structured high entropy oxide with highly reversible Fe3+/Fe4+ redox as advanced cathode material for sodium ion batteries
Reversible redox center is essential for long-life electrode materials. Iron is an earth abundant element, in lithium-ion batteries, highly reversible Fe2+/Fe3+ redox in LiFePO4 has play important role as redox center, Fe3+/Fe4+ redox in lithium layer-structured oxides display poor electrochemical performance. In sodium ion batteries, Fe3+/Fe4+ redox in sodium layer-structured oxides are active, while the cycle performance of Fe-contained sodium layer-structured oxide cathode need to be further improved. Herein, A pure-phase layer-structured high entropy oxide O3-Na(MgCu)1/12(NiCoFeMnTi)1/6O2 is synthesized and investigated as cathode for sodium ion battery. A reversible phase-transition takes place during the charge/discharge process. Particularly, highly reversible Fe3+/Fe4+ redox is revealed by X-ray absorption fine structure (XAFS). The as-synthesized high entropy oxide delivers a discharge capacity of 146.6 mAh g−1 at 10 mA g−1, and can retain 83.2 % of capacity after 700 cycles at 100 mA g−1 between 2.0 and 4.1 V vs. Na+/Na. In this work, Fe K-edge of Fe3+/Fe4+ redox displays rigid shift, HEO-MgCuNi could be a platform to investigate the fundamental property of Fe3+/Fe4+ redox.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
In-situ generated sulfur/porous carbon nanocomposites featuring enhanced specific surface area for aqueous zinc-sulfur batteries with small electrochemical polarization Self-assembled zinc polyethylenimine shield for long-lasting zinc anodes Polyimide dielectrics sandwiched by large-bandgap Al2O3 for high-temperature energy storage Enhancing sodium ion transport in batteries through a crosslinked ceramic network-coated polyethylene (PE) separator Multi-objective optimized energy management strategy using an artificial tree algorithm for extended range hybrid loaders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1