用于反铁磁自旋电子学和储氢的新型 B6P6X(X=As,Sb)单层膜

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-11-08 DOI:10.1016/j.jpcs.2024.112431
Yusuf Zuntu Abdullahi , Ikram Djebablia , Sohail Ahmad
{"title":"用于反铁磁自旋电子学和储氢的新型 B6P6X(X=As,Sb)单层膜","authors":"Yusuf Zuntu Abdullahi ,&nbsp;Ikram Djebablia ,&nbsp;Sohail Ahmad","doi":"10.1016/j.jpcs.2024.112431","DOIUrl":null,"url":null,"abstract":"<div><div>Embedding foreign atoms into porous two-dimensional (2D) materials has emerged as a promising strategy to tailor their electronic, magnetic, and adsorption properties, enabling promising applications in energy storage and spintronics devices. In this work, spin-polarized density functional theory (DFT) calculations were employed to investigate the ground state properties and hydrogen (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) storage of interstitially X = As and Sb atom doped <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> (<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span>) graphenylene monolayers. The resulting <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> (X = As, Sb) monolayers exhibit very good mechanical, dynamical, and thermal stabilities with antiferromagnetic (AFM) ground states. Electronic structure calculations reveal AFM semiconducting behavior for both monolayers, with indirect/direct band gaps of 0.71/0.60 eV (PBE) and 2.19/2.14 eV (HSE06) for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>/<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span>, respectively. All <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> monolayers exhibit an in-plane easy magnetization axis. The obtained Berezinskii–Kosterlitz–Thouless transition (BKT) temperature value of <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span> monolayer is 268.74 K. Furthermore, the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage capabilities of these <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> monolayers were examined. We find that <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span> monolayers can each adsorb up to 48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> molecules with an average adsorption energy (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>) of -0.14 eV/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The corresponding H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage gravimetric capacities are 6.91 wt% for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>@48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and 6.10 wt% for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>@48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, surpassing the U.S. Department of Energy’s 2025 target of 5.50 wt%. These findings highlighting the potential of <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> (X = As, Sb) monolayers for AFM spintronics and H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112431"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel B6P6X (X=As, Sb) monolayers for antiferromagnetic spintronics and hydrogen storage\",\"authors\":\"Yusuf Zuntu Abdullahi ,&nbsp;Ikram Djebablia ,&nbsp;Sohail Ahmad\",\"doi\":\"10.1016/j.jpcs.2024.112431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Embedding foreign atoms into porous two-dimensional (2D) materials has emerged as a promising strategy to tailor their electronic, magnetic, and adsorption properties, enabling promising applications in energy storage and spintronics devices. In this work, spin-polarized density functional theory (DFT) calculations were employed to investigate the ground state properties and hydrogen (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) storage of interstitially X = As and Sb atom doped <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> (<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span>) graphenylene monolayers. The resulting <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> (X = As, Sb) monolayers exhibit very good mechanical, dynamical, and thermal stabilities with antiferromagnetic (AFM) ground states. Electronic structure calculations reveal AFM semiconducting behavior for both monolayers, with indirect/direct band gaps of 0.71/0.60 eV (PBE) and 2.19/2.14 eV (HSE06) for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>/<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span>, respectively. All <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> monolayers exhibit an in-plane easy magnetization axis. The obtained Berezinskii–Kosterlitz–Thouless transition (BKT) temperature value of <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span> monolayer is 268.74 K. Furthermore, the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage capabilities of these <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> monolayers were examined. We find that <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span> monolayers can each adsorb up to 48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> molecules with an average adsorption energy (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>) of -0.14 eV/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The corresponding H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage gravimetric capacities are 6.91 wt% for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>@48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and 6.10 wt% for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>@48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, surpassing the U.S. Department of Energy’s 2025 target of 5.50 wt%. These findings highlighting the potential of <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> (X = As, Sb) monolayers for AFM spintronics and H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage applications.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"197 \",\"pages\":\"Article 112431\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005663\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005663","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在多孔二维(2D)材料中嵌入外来原子已成为一种很有前途的策略,可定制其电子、磁性和吸附特性,从而在储能和自旋电子器件中实现前景广阔的应用。在这项研究中,利用自旋极化密度泛函理论(DFT)计算研究了间隙 X = As 和 Sb 原子掺杂的 B6P6(B6P6X)石墨亚苯单层的基态性质和氢(H2)存储。由此产生的 B6P6X(X = As、Sb)单层具有非常好的机械、动力学和热稳定性,并具有反铁磁(AFM)基态。电子结构计算显示,这两种单层都具有 AFM 半导体特性,B6P6As/B6P6Sb 的间接/直接带隙分别为 0.71/0.60 eV(PBE)和 2.19/2.14 eV(HSE06)。所有 B6P6X 单层都表现出平面内易磁化轴。此外,还考察了这些 B6P6X 单层的 H2 储存能力。我们发现 B6P6As 和 B6P6Sb 单层最多可吸附 48 个 H2 分子,平均吸附能 (Ea) 为 -0.14 eV/H2。B6P6As@48H2 和 B6P6As@48H2 的相应 H2 储存重力容量分别为 6.91 wt%和 6.10 wt%,超过了美国能源部 2025 年提出的 5.50 wt% 的目标。这些发现凸显了 B6P6X(X = As、Sb)单层在 AFM 自旋电子学和 H2 储存应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel B6P6X (X=As, Sb) monolayers for antiferromagnetic spintronics and hydrogen storage
Embedding foreign atoms into porous two-dimensional (2D) materials has emerged as a promising strategy to tailor their electronic, magnetic, and adsorption properties, enabling promising applications in energy storage and spintronics devices. In this work, spin-polarized density functional theory (DFT) calculations were employed to investigate the ground state properties and hydrogen (H2) storage of interstitially X = As and Sb atom doped B6P6 (B6P6X) graphenylene monolayers. The resulting B6P6X (X = As, Sb) monolayers exhibit very good mechanical, dynamical, and thermal stabilities with antiferromagnetic (AFM) ground states. Electronic structure calculations reveal AFM semiconducting behavior for both monolayers, with indirect/direct band gaps of 0.71/0.60 eV (PBE) and 2.19/2.14 eV (HSE06) for B6P6As/B6P6Sb, respectively. All B6P6X monolayers exhibit an in-plane easy magnetization axis. The obtained Berezinskii–Kosterlitz–Thouless transition (BKT) temperature value of B6P6Sb monolayer is 268.74 K. Furthermore, the H2 storage capabilities of these B6P6X monolayers were examined. We find that B6P6As and B6P6Sb monolayers can each adsorb up to 48H2 molecules with an average adsorption energy (Ea) of -0.14 eV/H2. The corresponding H2 storage gravimetric capacities are 6.91 wt% for B6P6As@48H2 and 6.10 wt% for B6P6As@48H2, surpassing the U.S. Department of Energy’s 2025 target of 5.50 wt%. These findings highlighting the potential of B6P6X (X = As, Sb) monolayers for AFM spintronics and H2 storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
DFT and experimental study of Mg substituted strontium oxide for optoelectronic applications 19F high-resolution NMR studies on cation distribution and F− dynamics in highly conductive BaF2–CaF2 composite prepared by thermal plasma processing Photovoltaic potential of doped MgTiO3 (F, Br, I): prediction of optoelectronic and catalytic within ab initio approach Computational investigation of newly proposed double halide perovskites Cs2GaBiX6 (X = Cl, Br and I) with enhanced optoelectronic properties for green energy harvesting and photocatalytic applications An experimental study on corrosion resistance of Ti35 alloy and its high-fluence hydrogen bombardment behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1