Ge Sun , Quan Chen , Ran Li , Tongtong Mu , Hui Yang
{"title":"具有可变侧壁摩擦力的偏心料仓中颗粒流的质量排出率","authors":"Ge Sun , Quan Chen , Ran Li , Tongtong Mu , Hui Yang","doi":"10.1016/j.powtec.2024.120438","DOIUrl":null,"url":null,"abstract":"<div><div>There are many studies on the effect of side wall friction on mass discharge rate (MDR), but the physical mechanism is lacking. In this paper, by changing side wall friction of eccentric silos, the relationship between macroscopic MDR and microscopic frictional coefficient was established, and the regulation of MDR up to a range of 40 % was realized. Furthermore, it is revealed that the variation of MDR is caused by the change in geometric structure of free-fall arch (FFA). In addition, the velocity of particles on FFA is the same under different MDR. The reason is that under high frictional coefficient, the gravitational potential energy of particles is more dissipated in the rotational motion caused by resistance. This work explains for the first time the mechanism of the frictional coefficient on MDR, and provides a data reference for improving the theoretical model of MDR.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120438"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass discharge rate of granular flow in eccentric silos with variable side wall friction\",\"authors\":\"Ge Sun , Quan Chen , Ran Li , Tongtong Mu , Hui Yang\",\"doi\":\"10.1016/j.powtec.2024.120438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There are many studies on the effect of side wall friction on mass discharge rate (MDR), but the physical mechanism is lacking. In this paper, by changing side wall friction of eccentric silos, the relationship between macroscopic MDR and microscopic frictional coefficient was established, and the regulation of MDR up to a range of 40 % was realized. Furthermore, it is revealed that the variation of MDR is caused by the change in geometric structure of free-fall arch (FFA). In addition, the velocity of particles on FFA is the same under different MDR. The reason is that under high frictional coefficient, the gravitational potential energy of particles is more dissipated in the rotational motion caused by resistance. This work explains for the first time the mechanism of the frictional coefficient on MDR, and provides a data reference for improving the theoretical model of MDR.</div></div>\",\"PeriodicalId\":407,\"journal\":{\"name\":\"Powder Technology\",\"volume\":\"449 \",\"pages\":\"Article 120438\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032591024010829\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010829","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Mass discharge rate of granular flow in eccentric silos with variable side wall friction
There are many studies on the effect of side wall friction on mass discharge rate (MDR), but the physical mechanism is lacking. In this paper, by changing side wall friction of eccentric silos, the relationship between macroscopic MDR and microscopic frictional coefficient was established, and the regulation of MDR up to a range of 40 % was realized. Furthermore, it is revealed that the variation of MDR is caused by the change in geometric structure of free-fall arch (FFA). In addition, the velocity of particles on FFA is the same under different MDR. The reason is that under high frictional coefficient, the gravitational potential energy of particles is more dissipated in the rotational motion caused by resistance. This work explains for the first time the mechanism of the frictional coefficient on MDR, and provides a data reference for improving the theoretical model of MDR.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.