食用不饱和海藻酸寡糖对免疫缺陷小鼠肠道微生物群和肠粘膜免疫平衡的影响

Zhaopeng Shen , Hua Yin , Lu Sun , Lu Chen , Jiandong Li , Xin Zhang , Mingyong Zeng , Xiaolu Jiang , Junhong Yu
{"title":"食用不饱和海藻酸寡糖对免疫缺陷小鼠肠道微生物群和肠粘膜免疫平衡的影响","authors":"Zhaopeng Shen ,&nbsp;Hua Yin ,&nbsp;Lu Sun ,&nbsp;Lu Chen ,&nbsp;Jiandong Li ,&nbsp;Xin Zhang ,&nbsp;Mingyong Zeng ,&nbsp;Xiaolu Jiang ,&nbsp;Junhong Yu","doi":"10.1016/j.carpta.2024.100604","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the well-known health benefits of unsaturated alginate oligosaccharides (UAOS), limited information exists on how they regulate the gut microbiota and intestinal mucosal immunity. In this study, UAOS was produced by alginate lyase degradation. Fourier transform infrared (FTIR), mass spectrometry (MS), and nuclear magnetic resonance (NMR) analyses showed that UAOS primarily consists of oligosaccharides, mainly pentamers, with a G/M ratio of 1.44 and unsaturated double bonds at the non-reducing end. UAOS exhibited good prebiotic effects; increased beneficial intestinal bacteria; improved the diversity, structure, and composition of the gut microbiota; and promoted the production of SCFAs. In particular, UAOS significantly increased the abundance of butyrate levels and their producing microbiota, such as <em>Lachnospiraceae, Alloprevotella</em>, and <em>Butyicicoccus</em>. Moreover, orally administered UAOS alleviated intestinal mucosal immunosuppression by upregulating the levels of the tight junction proteins occludin and ZO-1, enhancing the intestinal biochemical and immune barrier function by increasing levels of mucin-2 and SIgA, upregulating the CD4+/CD8+ ratio, regulating CD4+ <em>T</em> cell differentiation, and stimulated immune cytokine secretion and transcription factor production (T-bet/GATA-3). This process was related to TLR4/MyD88/NF-κB pathway. In summary, UAOS effectively regulates intestinal mucosal immune homeostasis by strengthening the intestinal barrier and regulating the intestinal microbiota and intestinal butyrate levels. Therefore, UAOS acts as a prebiotic and immune stimulator to improve host health.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"8 ","pages":"Article 100604"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of consumption of unsaturated alginate oligosaccharides on the gut microbiota and the intestinal mucosal immunity homeostasis in immunocompromised mice\",\"authors\":\"Zhaopeng Shen ,&nbsp;Hua Yin ,&nbsp;Lu Sun ,&nbsp;Lu Chen ,&nbsp;Jiandong Li ,&nbsp;Xin Zhang ,&nbsp;Mingyong Zeng ,&nbsp;Xiaolu Jiang ,&nbsp;Junhong Yu\",\"doi\":\"10.1016/j.carpta.2024.100604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite the well-known health benefits of unsaturated alginate oligosaccharides (UAOS), limited information exists on how they regulate the gut microbiota and intestinal mucosal immunity. In this study, UAOS was produced by alginate lyase degradation. Fourier transform infrared (FTIR), mass spectrometry (MS), and nuclear magnetic resonance (NMR) analyses showed that UAOS primarily consists of oligosaccharides, mainly pentamers, with a G/M ratio of 1.44 and unsaturated double bonds at the non-reducing end. UAOS exhibited good prebiotic effects; increased beneficial intestinal bacteria; improved the diversity, structure, and composition of the gut microbiota; and promoted the production of SCFAs. In particular, UAOS significantly increased the abundance of butyrate levels and their producing microbiota, such as <em>Lachnospiraceae, Alloprevotella</em>, and <em>Butyicicoccus</em>. Moreover, orally administered UAOS alleviated intestinal mucosal immunosuppression by upregulating the levels of the tight junction proteins occludin and ZO-1, enhancing the intestinal biochemical and immune barrier function by increasing levels of mucin-2 and SIgA, upregulating the CD4+/CD8+ ratio, regulating CD4+ <em>T</em> cell differentiation, and stimulated immune cytokine secretion and transcription factor production (T-bet/GATA-3). This process was related to TLR4/MyD88/NF-κB pathway. In summary, UAOS effectively regulates intestinal mucosal immune homeostasis by strengthening the intestinal barrier and regulating the intestinal microbiota and intestinal butyrate levels. Therefore, UAOS acts as a prebiotic and immune stimulator to improve host health.</div></div>\",\"PeriodicalId\":100213,\"journal\":{\"name\":\"Carbohydrate Polymer Technologies and Applications\",\"volume\":\"8 \",\"pages\":\"Article 100604\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymer Technologies and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666893924001841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893924001841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

尽管不饱和藻酸寡糖(UAOS)对健康的益处众所周知,但有关它们如何调节肠道微生物群和肠粘膜免疫的信息却很有限。在这项研究中,不饱和藻酸寡糖是通过藻酸酶降解产生的。傅立叶变换红外(FTIR)、质谱(MS)和核磁共振(NMR)分析表明,UAOS 主要由低聚糖组成,以五聚体为主,G/M 比为 1.44,非还原端为不饱和双键。UAOS 具有良好的益生作用,能增加肠道有益菌,改善肠道微生物群的多样性、结构和组成,促进 SCFAs 的产生。特别是,尿囊素明显增加了丁酸盐含量及其产生微生物群,如Lachnospiraceae、Alloprevotella和Butyicicoccus。此外,口服 UAOS 还能通过上调紧密连接蛋白 occludin 和 ZO-1 的水平缓解肠粘膜免疫抑制,通过提高粘蛋白-2 和 SIgA 的水平增强肠道生化和免疫屏障功能,上调 CD4+/CD8+ 比率,调节 CD4+ T 细胞分化,刺激免疫细胞因子分泌和转录因子产生(T-bet/GATA-3)。这一过程与 TLR4/MyD88/NF-κB 通路有关。总之,UAOS 可通过加强肠道屏障、调节肠道微生物群和肠道丁酸盐水平来有效调节肠道粘膜免疫平衡。因此,UAOS 可作为一种益生元和免疫刺激剂来改善宿主健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of consumption of unsaturated alginate oligosaccharides on the gut microbiota and the intestinal mucosal immunity homeostasis in immunocompromised mice
Despite the well-known health benefits of unsaturated alginate oligosaccharides (UAOS), limited information exists on how they regulate the gut microbiota and intestinal mucosal immunity. In this study, UAOS was produced by alginate lyase degradation. Fourier transform infrared (FTIR), mass spectrometry (MS), and nuclear magnetic resonance (NMR) analyses showed that UAOS primarily consists of oligosaccharides, mainly pentamers, with a G/M ratio of 1.44 and unsaturated double bonds at the non-reducing end. UAOS exhibited good prebiotic effects; increased beneficial intestinal bacteria; improved the diversity, structure, and composition of the gut microbiota; and promoted the production of SCFAs. In particular, UAOS significantly increased the abundance of butyrate levels and their producing microbiota, such as Lachnospiraceae, Alloprevotella, and Butyicicoccus. Moreover, orally administered UAOS alleviated intestinal mucosal immunosuppression by upregulating the levels of the tight junction proteins occludin and ZO-1, enhancing the intestinal biochemical and immune barrier function by increasing levels of mucin-2 and SIgA, upregulating the CD4+/CD8+ ratio, regulating CD4+ T cell differentiation, and stimulated immune cytokine secretion and transcription factor production (T-bet/GATA-3). This process was related to TLR4/MyD88/NF-κB pathway. In summary, UAOS effectively regulates intestinal mucosal immune homeostasis by strengthening the intestinal barrier and regulating the intestinal microbiota and intestinal butyrate levels. Therefore, UAOS acts as a prebiotic and immune stimulator to improve host health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Influence of consumption of unsaturated alginate oligosaccharides on the gut microbiota and the intestinal mucosal immunity homeostasis in immunocompromised mice Production of cellulose nanocrystals from the waste banana (M. oranta) tree rachis fiber as a reinforcement to fabricate useful bionanocomposite Novel waste wool fabric reinforced alginate-gum hydrogel composites for rapid and selective Pb (II) adsorption Preparation and characterization of crystalline nanocellulose from keya (Pandanus tectorius) L. fiber as potential reinforcement in sustainable bionanocomposite: A waste to wealth scheme Fructo-oligosaccharides and polyfructans derived from Ophiopogon japonicus ameliorate experimental colitis by regulating the gut microbiota
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1