Cristóbal Cuesta, Elena Rodríguez, Sara F. Villanueva, María Antonia Diez, Ana Arenillas, María Antonia López-Antón, M. Rosa Martínez-Tarazona, Roberto García
{"title":"可持续地直接合成具有纳米分散磁铁矿和元素铁颗粒的分层多孔石墨化碳泡沫","authors":"Cristóbal Cuesta, Elena Rodríguez, Sara F. Villanueva, María Antonia Diez, Ana Arenillas, María Antonia López-Antón, M. Rosa Martínez-Tarazona, Roberto García","doi":"10.1016/j.indcrop.2024.120058","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a straightforward synthesis method for producing 3D carbon foams with specific characteristics, including an open macroporous structure combined with microporosity and mesoporosity, as well as the nanodispersion of various iron species within the carbonaceous matrix. The process involves thermo-foaming and carbonisation of sucrose in the presence of an iron nitrate additive, resulting in ordered carbon structures with reduced oxygen content and finely nanodispersed iron species particles within the carbon matrix. The properties of the resulting material vary based on the proportion of the additive and the carbonisation temperature, highlighting the versatility of the method in producing different materials for diverse plications. Above 800 °C, iron nitrate reacts to form Fe<sub>3</sub>O<sub>4</sub> and Fe<sup>0</sup>, which catalytically influence the foam structure. Graphitisation consistently occurs between 800 and 900 °C, facilitated by the fine nanodispersion of iron species. The combination of an open macroporous nature with microporosity and mesoporosity, along with a partially graphitised carbonaceous matrix containing nanodispersed active iron species, makes these materials promising candidates for valuable applications such as adsorption, catalysis, and biomedical uses.</div></div>","PeriodicalId":13581,"journal":{"name":"Industrial Crops and Products","volume":"222 ","pages":"Article 120058"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable straightforward synthesis of hierarchically porous graphitised carbon foams with nanodispersed magnetite and elemental iron particles\",\"authors\":\"Cristóbal Cuesta, Elena Rodríguez, Sara F. Villanueva, María Antonia Diez, Ana Arenillas, María Antonia López-Antón, M. Rosa Martínez-Tarazona, Roberto García\",\"doi\":\"10.1016/j.indcrop.2024.120058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a straightforward synthesis method for producing 3D carbon foams with specific characteristics, including an open macroporous structure combined with microporosity and mesoporosity, as well as the nanodispersion of various iron species within the carbonaceous matrix. The process involves thermo-foaming and carbonisation of sucrose in the presence of an iron nitrate additive, resulting in ordered carbon structures with reduced oxygen content and finely nanodispersed iron species particles within the carbon matrix. The properties of the resulting material vary based on the proportion of the additive and the carbonisation temperature, highlighting the versatility of the method in producing different materials for diverse plications. Above 800 °C, iron nitrate reacts to form Fe<sub>3</sub>O<sub>4</sub> and Fe<sup>0</sup>, which catalytically influence the foam structure. Graphitisation consistently occurs between 800 and 900 °C, facilitated by the fine nanodispersion of iron species. The combination of an open macroporous nature with microporosity and mesoporosity, along with a partially graphitised carbonaceous matrix containing nanodispersed active iron species, makes these materials promising candidates for valuable applications such as adsorption, catalysis, and biomedical uses.</div></div>\",\"PeriodicalId\":13581,\"journal\":{\"name\":\"Industrial Crops and Products\",\"volume\":\"222 \",\"pages\":\"Article 120058\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Crops and Products\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926669024020351\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Crops and Products","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926669024020351","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Sustainable straightforward synthesis of hierarchically porous graphitised carbon foams with nanodispersed magnetite and elemental iron particles
This study presents a straightforward synthesis method for producing 3D carbon foams with specific characteristics, including an open macroporous structure combined with microporosity and mesoporosity, as well as the nanodispersion of various iron species within the carbonaceous matrix. The process involves thermo-foaming and carbonisation of sucrose in the presence of an iron nitrate additive, resulting in ordered carbon structures with reduced oxygen content and finely nanodispersed iron species particles within the carbon matrix. The properties of the resulting material vary based on the proportion of the additive and the carbonisation temperature, highlighting the versatility of the method in producing different materials for diverse plications. Above 800 °C, iron nitrate reacts to form Fe3O4 and Fe0, which catalytically influence the foam structure. Graphitisation consistently occurs between 800 and 900 °C, facilitated by the fine nanodispersion of iron species. The combination of an open macroporous nature with microporosity and mesoporosity, along with a partially graphitised carbonaceous matrix containing nanodispersed active iron species, makes these materials promising candidates for valuable applications such as adsorption, catalysis, and biomedical uses.
期刊介绍:
Industrial Crops and Products is an International Journal publishing academic and industrial research on industrial (defined as non-food/non-feed) crops and products. Papers concern both crop-oriented and bio-based materials from crops-oriented research, and should be of interest to an international audience, hypothesis driven, and where comparisons are made statistics performed.