Abdu Saeed , Eman Alzahrani , M.A. Morsi , A.E. Tarabiah , E.M. Abdelrazek , Saleh Aldwais , Saleh A. Alghamdi , Amani M. Al-Harthi , A.A. Al-Muntaser
{"title":"增强光电应用中 PEO/PMMA/TiO2 纳米复合材料的光学和电学特性","authors":"Abdu Saeed , Eman Alzahrani , M.A. Morsi , A.E. Tarabiah , E.M. Abdelrazek , Saleh Aldwais , Saleh A. Alghamdi , Amani M. Al-Harthi , A.A. Al-Muntaser","doi":"10.1016/j.optmat.2024.116402","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we synthesized titanium oxide (TiO<sub>2</sub>) nanoparticles (NPs) via the sol-gel process and incorporated them into a polymer blend of polyethylene oxide (PEO) and polymethyl methacrylate (PMMA) to form PEO/PMMA/TiO2 nanocomposites. The TiO<sub>2</sub> NPs were integrated into the polymer matrix using the casting method at varying concentrations (1, 2, and 3 wt%). The structural, morphological, optical, and electrical properties of the prepared TiO<sub>2</sub> and nanocomposite films were thoroughly characterized using techniques such as transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and electrical impedance spectroscopy (EIS). TEM analysis revealed predominantly spherical TiO<sub>2</sub> NPs with an average particle size of 15 nm. XRD and FTIR analyses confirmed the successful incorporation of TiO<sub>2</sub> NPs and their interaction with the polymer chains, leading to modifications in the crystalline structure and chemical bonding of the nanocomposites. UV–Vis spectroscopy demonstrated a redshift in the absorption edge and increased absorbance with higher TiO₂ content, indicating enhanced optical properties. The indirect optical bandgap was observed to decrease from 4.19 eV to 2.21 eV as the TiO<sub>2</sub> concentration increased, enhancing the material's photoresponsiveness. Additionally, the refractive index increased from 2.11 to 2.91, further supporting the potential for optical applications. EIS results showed a decrease in bulk resistance with increasing TiO<sub>2</sub> concentration, suggesting improved electrical conductivity. These findings highlight the potential of PEO/PMMA/TiO<sub>2</sub> nanocomposites for optoelectronic applications, where enhanced optical properties, such as improved light absorption, higher refractive index, and improved charge transport, are critical for device performance. The study offers an understanding of the PEO/PMMA/TiO<sub>2</sub> nanocomposites, laying a foundation for future research in their applications in optoelectronic devices.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116402"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced optical and electrical properties of PEO/PMMA/TiO2 nanocomposites for optoelectronic applications\",\"authors\":\"Abdu Saeed , Eman Alzahrani , M.A. Morsi , A.E. Tarabiah , E.M. Abdelrazek , Saleh Aldwais , Saleh A. Alghamdi , Amani M. Al-Harthi , A.A. Al-Muntaser\",\"doi\":\"10.1016/j.optmat.2024.116402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we synthesized titanium oxide (TiO<sub>2</sub>) nanoparticles (NPs) via the sol-gel process and incorporated them into a polymer blend of polyethylene oxide (PEO) and polymethyl methacrylate (PMMA) to form PEO/PMMA/TiO2 nanocomposites. The TiO<sub>2</sub> NPs were integrated into the polymer matrix using the casting method at varying concentrations (1, 2, and 3 wt%). The structural, morphological, optical, and electrical properties of the prepared TiO<sub>2</sub> and nanocomposite films were thoroughly characterized using techniques such as transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and electrical impedance spectroscopy (EIS). TEM analysis revealed predominantly spherical TiO<sub>2</sub> NPs with an average particle size of 15 nm. XRD and FTIR analyses confirmed the successful incorporation of TiO<sub>2</sub> NPs and their interaction with the polymer chains, leading to modifications in the crystalline structure and chemical bonding of the nanocomposites. UV–Vis spectroscopy demonstrated a redshift in the absorption edge and increased absorbance with higher TiO₂ content, indicating enhanced optical properties. The indirect optical bandgap was observed to decrease from 4.19 eV to 2.21 eV as the TiO<sub>2</sub> concentration increased, enhancing the material's photoresponsiveness. Additionally, the refractive index increased from 2.11 to 2.91, further supporting the potential for optical applications. EIS results showed a decrease in bulk resistance with increasing TiO<sub>2</sub> concentration, suggesting improved electrical conductivity. These findings highlight the potential of PEO/PMMA/TiO<sub>2</sub> nanocomposites for optoelectronic applications, where enhanced optical properties, such as improved light absorption, higher refractive index, and improved charge transport, are critical for device performance. The study offers an understanding of the PEO/PMMA/TiO<sub>2</sub> nanocomposites, laying a foundation for future research in their applications in optoelectronic devices.</div></div>\",\"PeriodicalId\":19564,\"journal\":{\"name\":\"Optical Materials\",\"volume\":\"157 \",\"pages\":\"Article 116402\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925346724015854\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724015854","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced optical and electrical properties of PEO/PMMA/TiO2 nanocomposites for optoelectronic applications
In this study, we synthesized titanium oxide (TiO2) nanoparticles (NPs) via the sol-gel process and incorporated them into a polymer blend of polyethylene oxide (PEO) and polymethyl methacrylate (PMMA) to form PEO/PMMA/TiO2 nanocomposites. The TiO2 NPs were integrated into the polymer matrix using the casting method at varying concentrations (1, 2, and 3 wt%). The structural, morphological, optical, and electrical properties of the prepared TiO2 and nanocomposite films were thoroughly characterized using techniques such as transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and electrical impedance spectroscopy (EIS). TEM analysis revealed predominantly spherical TiO2 NPs with an average particle size of 15 nm. XRD and FTIR analyses confirmed the successful incorporation of TiO2 NPs and their interaction with the polymer chains, leading to modifications in the crystalline structure and chemical bonding of the nanocomposites. UV–Vis spectroscopy demonstrated a redshift in the absorption edge and increased absorbance with higher TiO₂ content, indicating enhanced optical properties. The indirect optical bandgap was observed to decrease from 4.19 eV to 2.21 eV as the TiO2 concentration increased, enhancing the material's photoresponsiveness. Additionally, the refractive index increased from 2.11 to 2.91, further supporting the potential for optical applications. EIS results showed a decrease in bulk resistance with increasing TiO2 concentration, suggesting improved electrical conductivity. These findings highlight the potential of PEO/PMMA/TiO2 nanocomposites for optoelectronic applications, where enhanced optical properties, such as improved light absorption, higher refractive index, and improved charge transport, are critical for device performance. The study offers an understanding of the PEO/PMMA/TiO2 nanocomposites, laying a foundation for future research in their applications in optoelectronic devices.
期刊介绍:
Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials.
OPTICAL MATERIALS focuses on:
• Optical Properties of Material Systems;
• The Materials Aspects of Optical Phenomena;
• The Materials Aspects of Devices and Applications.
Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.