Zeyu Gang , Shijian Guan , Jun Lu , Yunshan Zhang , Shenghong Xie , Yitong Liu , Zhenxing Sun , Rulei Xiao , Tao Fang , Xiangfei Chen
{"title":"采用光子线键合结构集成的 8 通道窄线宽多波长混合激光器,用于 DWDM 系统","authors":"Zeyu Gang , Shijian Guan , Jun Lu , Yunshan Zhang , Shenghong Xie , Yitong Liu , Zhenxing Sun , Rulei Xiao , Tao Fang , Xiangfei Chen","doi":"10.1016/j.optcom.2024.131252","DOIUrl":null,"url":null,"abstract":"<div><div>An 8-channel monolithically integrated narrow linewidth multi-wavelength laser array (NL-MLA) combined with the commercial 8 × 1 planar lightwave circuit (PLC) coupler by the photonic wire bonding (PWB) technique is demonstrated in this paper. A distributed feedback (DFB) laser with the high-reflection and anti-reflection coatings (HR-AR) and the tapered asymmetric corrugation-pitch-modulated (TACPM) grating structure is proposed. The TACPM grating is achieved by the reconstruction equivalent chirp (REC) technique, which is low-cost and of high wavelength accuracy. According to the numerical simulation results, under the unavoidable impact of the facet phase of the HR end, the TACPM DFB laser suppresses the longitudinal spatial hole burning (LSHB) effect significantly, while having better single-mode performance and control of wavelength compared with the conventional HR-AR DFB laser. An 8-channel HR-AR TACPM DFB NL-MLA is fabricated with the 0.8 nm wavelength spacing design. The hybrid integration between the 8-channel NL-MLA and the PLC chip is achieved using the PWB technique. Both good single-mode performance and accurate wavelength interval of 0.8 nm can be obtained when all channels work simultaneously. The laser linewidth is below 273.8 kHz with good uniformity, and the relative intensity noise is under −159.6 dB/Hz for each channel.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131252"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An 8-channel narrow linewidth multi-wavelength laser hybrid integrated by photonic wire bonding structures for DWDM systems\",\"authors\":\"Zeyu Gang , Shijian Guan , Jun Lu , Yunshan Zhang , Shenghong Xie , Yitong Liu , Zhenxing Sun , Rulei Xiao , Tao Fang , Xiangfei Chen\",\"doi\":\"10.1016/j.optcom.2024.131252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An 8-channel monolithically integrated narrow linewidth multi-wavelength laser array (NL-MLA) combined with the commercial 8 × 1 planar lightwave circuit (PLC) coupler by the photonic wire bonding (PWB) technique is demonstrated in this paper. A distributed feedback (DFB) laser with the high-reflection and anti-reflection coatings (HR-AR) and the tapered asymmetric corrugation-pitch-modulated (TACPM) grating structure is proposed. The TACPM grating is achieved by the reconstruction equivalent chirp (REC) technique, which is low-cost and of high wavelength accuracy. According to the numerical simulation results, under the unavoidable impact of the facet phase of the HR end, the TACPM DFB laser suppresses the longitudinal spatial hole burning (LSHB) effect significantly, while having better single-mode performance and control of wavelength compared with the conventional HR-AR DFB laser. An 8-channel HR-AR TACPM DFB NL-MLA is fabricated with the 0.8 nm wavelength spacing design. The hybrid integration between the 8-channel NL-MLA and the PLC chip is achieved using the PWB technique. Both good single-mode performance and accurate wavelength interval of 0.8 nm can be obtained when all channels work simultaneously. The laser linewidth is below 273.8 kHz with good uniformity, and the relative intensity noise is under −159.6 dB/Hz for each channel.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"575 \",\"pages\":\"Article 131252\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401824009891\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824009891","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
An 8-channel narrow linewidth multi-wavelength laser hybrid integrated by photonic wire bonding structures for DWDM systems
An 8-channel monolithically integrated narrow linewidth multi-wavelength laser array (NL-MLA) combined with the commercial 8 × 1 planar lightwave circuit (PLC) coupler by the photonic wire bonding (PWB) technique is demonstrated in this paper. A distributed feedback (DFB) laser with the high-reflection and anti-reflection coatings (HR-AR) and the tapered asymmetric corrugation-pitch-modulated (TACPM) grating structure is proposed. The TACPM grating is achieved by the reconstruction equivalent chirp (REC) technique, which is low-cost and of high wavelength accuracy. According to the numerical simulation results, under the unavoidable impact of the facet phase of the HR end, the TACPM DFB laser suppresses the longitudinal spatial hole burning (LSHB) effect significantly, while having better single-mode performance and control of wavelength compared with the conventional HR-AR DFB laser. An 8-channel HR-AR TACPM DFB NL-MLA is fabricated with the 0.8 nm wavelength spacing design. The hybrid integration between the 8-channel NL-MLA and the PLC chip is achieved using the PWB technique. Both good single-mode performance and accurate wavelength interval of 0.8 nm can be obtained when all channels work simultaneously. The laser linewidth is below 273.8 kHz with good uniformity, and the relative intensity noise is under −159.6 dB/Hz for each channel.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.