{"title":"基于无盲区双目检测系统的红外非均匀性校正方法","authors":"Honghong Lu , Tong Liu , Zhenhua Li","doi":"10.1016/j.optcom.2024.131219","DOIUrl":null,"url":null,"abstract":"<div><div>The output image of an infrared detector often suffers from non-uniformity due to the inhomogeneity of the device material and limitations in the manufacturing process, which can reduce the detector's capability to detect and identify targets. It is therefore necessary to adequately correct the non-uniformity to fully utilize the high temperature sensitivity of the detector. Calibration-based non-uniformity correction technology is one of the earliest and most effective methods of correcting non-uniformity. Typically, a relatively uniform shutter is used to mask the field of view for calibration correction. However, this process interrupts the observation due to the need for masking, severely limiting its use in real-world projects. In order to maintain the performance superiority of the calibration-based method and eliminate the defect of target loss caused by masking, this paper takes the occlusion calibration as the theoretical basis, which consists of dual detectors to form a binocular detection system, and uses one of the occluded calibration auxiliary detector to assist the other occlusion-free primary detector, and takes advantage of the fact that the radiation is the same when observing the same target at the same time to make the correct response based on the steepest gradient descent learning algorithm, which removes the non-uniformity while achieving detail fidelity, no ghosting and continuous output.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131219"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared non-uniformity correction method based on binocular detection system without blindsight\",\"authors\":\"Honghong Lu , Tong Liu , Zhenhua Li\",\"doi\":\"10.1016/j.optcom.2024.131219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The output image of an infrared detector often suffers from non-uniformity due to the inhomogeneity of the device material and limitations in the manufacturing process, which can reduce the detector's capability to detect and identify targets. It is therefore necessary to adequately correct the non-uniformity to fully utilize the high temperature sensitivity of the detector. Calibration-based non-uniformity correction technology is one of the earliest and most effective methods of correcting non-uniformity. Typically, a relatively uniform shutter is used to mask the field of view for calibration correction. However, this process interrupts the observation due to the need for masking, severely limiting its use in real-world projects. In order to maintain the performance superiority of the calibration-based method and eliminate the defect of target loss caused by masking, this paper takes the occlusion calibration as the theoretical basis, which consists of dual detectors to form a binocular detection system, and uses one of the occluded calibration auxiliary detector to assist the other occlusion-free primary detector, and takes advantage of the fact that the radiation is the same when observing the same target at the same time to make the correct response based on the steepest gradient descent learning algorithm, which removes the non-uniformity while achieving detail fidelity, no ghosting and continuous output.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"575 \",\"pages\":\"Article 131219\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401824009568\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824009568","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Infrared non-uniformity correction method based on binocular detection system without blindsight
The output image of an infrared detector often suffers from non-uniformity due to the inhomogeneity of the device material and limitations in the manufacturing process, which can reduce the detector's capability to detect and identify targets. It is therefore necessary to adequately correct the non-uniformity to fully utilize the high temperature sensitivity of the detector. Calibration-based non-uniformity correction technology is one of the earliest and most effective methods of correcting non-uniformity. Typically, a relatively uniform shutter is used to mask the field of view for calibration correction. However, this process interrupts the observation due to the need for masking, severely limiting its use in real-world projects. In order to maintain the performance superiority of the calibration-based method and eliminate the defect of target loss caused by masking, this paper takes the occlusion calibration as the theoretical basis, which consists of dual detectors to form a binocular detection system, and uses one of the occluded calibration auxiliary detector to assist the other occlusion-free primary detector, and takes advantage of the fact that the radiation is the same when observing the same target at the same time to make the correct response based on the steepest gradient descent learning algorithm, which removes the non-uniformity while achieving detail fidelity, no ghosting and continuous output.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.