Kaiyu Chai, Bo Hu, Zheng Fu, Yukang Li, Kaili Ren, Dongdong Han, Lipeng Zhu, Lei Liang, Yipeng Zheng
{"title":"利用负曲率反谐振中空芯光纤进行气体检测的可调谐二极管激光吸收光谱技术","authors":"Kaiyu Chai, Bo Hu, Zheng Fu, Yukang Li, Kaili Ren, Dongdong Han, Lipeng Zhu, Lei Liang, Yipeng Zheng","doi":"10.1016/j.optcom.2024.131278","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an all-fiber gas sensing technology was proposed, which is based on tunable diode laser absorption spectroscopy in the near infrared. A negative curvature anti-resonant hollow-core fiber was used as the gas chamber and optical channel, and an opto-gas coupling miniature tee was used in the configuration. Down to ppb (parts-per-billion) level noise-equivalent concentration was achieved with a fast-response capability of less than 6 s. The results demonstrated strong long-term stability, with a relative standard deviation of approximately 2.1% over a 12-h period. This approach demonstrates a simple, robust, fast response and compact sensor configuration that contributes to better management of greenhouse gas emissions and environmental pollution.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131278"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable diode laser absorption spectroscopy for gas detection with a negative curvature anti-resonant hollow-core fiber\",\"authors\":\"Kaiyu Chai, Bo Hu, Zheng Fu, Yukang Li, Kaili Ren, Dongdong Han, Lipeng Zhu, Lei Liang, Yipeng Zheng\",\"doi\":\"10.1016/j.optcom.2024.131278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, an all-fiber gas sensing technology was proposed, which is based on tunable diode laser absorption spectroscopy in the near infrared. A negative curvature anti-resonant hollow-core fiber was used as the gas chamber and optical channel, and an opto-gas coupling miniature tee was used in the configuration. Down to ppb (parts-per-billion) level noise-equivalent concentration was achieved with a fast-response capability of less than 6 s. The results demonstrated strong long-term stability, with a relative standard deviation of approximately 2.1% over a 12-h period. This approach demonstrates a simple, robust, fast response and compact sensor configuration that contributes to better management of greenhouse gas emissions and environmental pollution.</div></div>\",\"PeriodicalId\":19586,\"journal\":{\"name\":\"Optics Communications\",\"volume\":\"575 \",\"pages\":\"Article 131278\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030401824010150\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824010150","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Tunable diode laser absorption spectroscopy for gas detection with a negative curvature anti-resonant hollow-core fiber
In this study, an all-fiber gas sensing technology was proposed, which is based on tunable diode laser absorption spectroscopy in the near infrared. A negative curvature anti-resonant hollow-core fiber was used as the gas chamber and optical channel, and an opto-gas coupling miniature tee was used in the configuration. Down to ppb (parts-per-billion) level noise-equivalent concentration was achieved with a fast-response capability of less than 6 s. The results demonstrated strong long-term stability, with a relative standard deviation of approximately 2.1% over a 12-h period. This approach demonstrates a simple, robust, fast response and compact sensor configuration that contributes to better management of greenhouse gas emissions and environmental pollution.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.