Wanxu Yang , Ruichuan Li , Jikang Xu , Guangchun Xiao , Wentao Yuan , Yuhang Sun , Qingguang Zhang
{"title":"基于 CFD 的微型开关阀轴向稳态流体力学研究与结构优化","authors":"Wanxu Yang , Ruichuan Li , Jikang Xu , Guangchun Xiao , Wentao Yuan , Yuhang Sun , Qingguang Zhang","doi":"10.1016/j.flowmeasinst.2024.102744","DOIUrl":null,"url":null,"abstract":"<div><div>Miniature switching valve internal flow pattern is relatively complex, in the working process of the hydraulic valve cavity often produces low-pressure areas, and eddy currents, as well as leads to spool deformation and displacement of the hydrodynamic force and other phenomena. This affects the stability of the internal flow field of the hydraulic valve, especially when the hydraulic pressure is too large to block the spool movement, inaccurate action is present, or even spool opening and closing failure is jitter out of control. Other phenomena, this paper designs a new type of spool and body combination of miniature switching hydraulic valves, to reduce its axial hydraulic pressure. Firstly, a three-dimensional model of the hydraulic valve with different seat angles was established; secondly, CFD numerical analysis of the model was carried out using FLUENT, and the axial steady state hydrodynamic force was studied by comparing the simulation results. The results show that by simultaneously modifying the geometry of the spool and the valve body, the axial component of the hydrodynamic force can be significantly reduced, thus significantly changing the magnitude of the axial hydrodynamic force of the switching valve, to satisfy the requirement of reducing the driving force required for the work, and to achieve the reduction of power consumption. Finally through the hydraulic valve comprehensive test bench to verify the accuracy of the miniature switching valve, through the research of this paper, can provide a certain reference for the design and research of the switching valve.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"100 ","pages":"Article 102744"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD-based axial steady-state hydrodynamic study and structural optimization of miniature switching valve\",\"authors\":\"Wanxu Yang , Ruichuan Li , Jikang Xu , Guangchun Xiao , Wentao Yuan , Yuhang Sun , Qingguang Zhang\",\"doi\":\"10.1016/j.flowmeasinst.2024.102744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Miniature switching valve internal flow pattern is relatively complex, in the working process of the hydraulic valve cavity often produces low-pressure areas, and eddy currents, as well as leads to spool deformation and displacement of the hydrodynamic force and other phenomena. This affects the stability of the internal flow field of the hydraulic valve, especially when the hydraulic pressure is too large to block the spool movement, inaccurate action is present, or even spool opening and closing failure is jitter out of control. Other phenomena, this paper designs a new type of spool and body combination of miniature switching hydraulic valves, to reduce its axial hydraulic pressure. Firstly, a three-dimensional model of the hydraulic valve with different seat angles was established; secondly, CFD numerical analysis of the model was carried out using FLUENT, and the axial steady state hydrodynamic force was studied by comparing the simulation results. The results show that by simultaneously modifying the geometry of the spool and the valve body, the axial component of the hydrodynamic force can be significantly reduced, thus significantly changing the magnitude of the axial hydrodynamic force of the switching valve, to satisfy the requirement of reducing the driving force required for the work, and to achieve the reduction of power consumption. Finally through the hydraulic valve comprehensive test bench to verify the accuracy of the miniature switching valve, through the research of this paper, can provide a certain reference for the design and research of the switching valve.</div></div>\",\"PeriodicalId\":50440,\"journal\":{\"name\":\"Flow Measurement and Instrumentation\",\"volume\":\"100 \",\"pages\":\"Article 102744\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow Measurement and Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955598624002243\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624002243","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
CFD-based axial steady-state hydrodynamic study and structural optimization of miniature switching valve
Miniature switching valve internal flow pattern is relatively complex, in the working process of the hydraulic valve cavity often produces low-pressure areas, and eddy currents, as well as leads to spool deformation and displacement of the hydrodynamic force and other phenomena. This affects the stability of the internal flow field of the hydraulic valve, especially when the hydraulic pressure is too large to block the spool movement, inaccurate action is present, or even spool opening and closing failure is jitter out of control. Other phenomena, this paper designs a new type of spool and body combination of miniature switching hydraulic valves, to reduce its axial hydraulic pressure. Firstly, a three-dimensional model of the hydraulic valve with different seat angles was established; secondly, CFD numerical analysis of the model was carried out using FLUENT, and the axial steady state hydrodynamic force was studied by comparing the simulation results. The results show that by simultaneously modifying the geometry of the spool and the valve body, the axial component of the hydrodynamic force can be significantly reduced, thus significantly changing the magnitude of the axial hydrodynamic force of the switching valve, to satisfy the requirement of reducing the driving force required for the work, and to achieve the reduction of power consumption. Finally through the hydraulic valve comprehensive test bench to verify the accuracy of the miniature switching valve, through the research of this paper, can provide a certain reference for the design and research of the switching valve.
期刊介绍:
Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions.
FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest:
Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible.
Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems.
Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories.
Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.