用过渡金属(铁、钴、镍、铜)修饰的 MoS2 对 H2O 吸附的影响:第一原理研究

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-11-13 DOI:10.1016/j.micrna.2024.208021
Shengxu Zhao , Yue Yuan , Yue Feng , Xin Liu , Chi Liu , Shaozhi Pu , Tao Shen
{"title":"用过渡金属(铁、钴、镍、铜)修饰的 MoS2 对 H2O 吸附的影响:第一原理研究","authors":"Shengxu Zhao ,&nbsp;Yue Yuan ,&nbsp;Yue Feng ,&nbsp;Xin Liu ,&nbsp;Chi Liu ,&nbsp;Shaozhi Pu ,&nbsp;Tao Shen","doi":"10.1016/j.micrna.2024.208021","DOIUrl":null,"url":null,"abstract":"<div><div>MoS<sub>2</sub> has great potential as a humidity sensor, and doping is considered the most promising method to enhance the adsorption of H<sub>2</sub>O molecule by MoS<sub>2</sub>. Unfortunately, vacancy doping sacrifices the stability of the material while enhancing adsorption efficiency. Here, we use Fe, Co, Ni, Cu to modify the surface of MoS<sub>2</sub> and study the adsorption characteristics of H<sub>2</sub>O molecule on MoS<sub>2</sub> before and after modification. The first principles calculations further indicate that partial transition metal (TM) doping can induce spin polarization in MoS<sub>2</sub>. Spin polarization further enhances orbital hybridization between atoms, thereby improving adsorption performance. On the basis of qualitative analysis of thermodynamic stability and electrical properties, quantitative analysis was conducted on adsorption energy and charge transfer. The results indicate that the adsorption energy, in descending order, is Fe–MoS<sub>2</sub> &gt; Co–MoS<sub>2</sub> &gt; Ni–MoS<sub>2</sub> &gt; Cu–MoS<sub>2</sub> &gt; MoS<sub>2</sub>. Compared with MoS<sub>2</sub>, Fe–MoS<sub>2</sub> has the best adsorption effect among the four doping systems, with an adsorption energy increase of 22.1 times. Importantly, simulations of desorption time have demonstrated that Fe–MoS<sub>2</sub> and Co–MoS<sub>2</sub> exhibit a significant reduction in desorption time with increasing temperature and can be rapidly recycled.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"197 ","pages":"Article 208021"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of MoS2 modified with transition metal (Fe, Co, Ni, Cu) on H2O adsorption: A first principle study\",\"authors\":\"Shengxu Zhao ,&nbsp;Yue Yuan ,&nbsp;Yue Feng ,&nbsp;Xin Liu ,&nbsp;Chi Liu ,&nbsp;Shaozhi Pu ,&nbsp;Tao Shen\",\"doi\":\"10.1016/j.micrna.2024.208021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MoS<sub>2</sub> has great potential as a humidity sensor, and doping is considered the most promising method to enhance the adsorption of H<sub>2</sub>O molecule by MoS<sub>2</sub>. Unfortunately, vacancy doping sacrifices the stability of the material while enhancing adsorption efficiency. Here, we use Fe, Co, Ni, Cu to modify the surface of MoS<sub>2</sub> and study the adsorption characteristics of H<sub>2</sub>O molecule on MoS<sub>2</sub> before and after modification. The first principles calculations further indicate that partial transition metal (TM) doping can induce spin polarization in MoS<sub>2</sub>. Spin polarization further enhances orbital hybridization between atoms, thereby improving adsorption performance. On the basis of qualitative analysis of thermodynamic stability and electrical properties, quantitative analysis was conducted on adsorption energy and charge transfer. The results indicate that the adsorption energy, in descending order, is Fe–MoS<sub>2</sub> &gt; Co–MoS<sub>2</sub> &gt; Ni–MoS<sub>2</sub> &gt; Cu–MoS<sub>2</sub> &gt; MoS<sub>2</sub>. Compared with MoS<sub>2</sub>, Fe–MoS<sub>2</sub> has the best adsorption effect among the four doping systems, with an adsorption energy increase of 22.1 times. Importantly, simulations of desorption time have demonstrated that Fe–MoS<sub>2</sub> and Co–MoS<sub>2</sub> exhibit a significant reduction in desorption time with increasing temperature and can be rapidly recycled.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"197 \",\"pages\":\"Article 208021\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277301232400270X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277301232400270X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

MoS2 具有作为湿度传感器的巨大潜力,而掺杂被认为是增强 MoS2 对 H2O 分子吸附的最有前途的方法。遗憾的是,空位掺杂在提高吸附效率的同时也牺牲了材料的稳定性。在此,我们使用 Fe、Co、Ni、Cu 对 MoS2 表面进行修饰,并研究了修饰前后 H2O 分子在 MoS2 上的吸附特性。第一性原理计算进一步表明,部分过渡金属(TM)掺杂可诱导 MoS2 的自旋极化。自旋极化进一步增强了原子间的轨道杂化,从而改善了吸附性能。在对热力学稳定性和电学特性进行定性分析的基础上,对吸附能和电荷转移进行了定量分析。结果表明,吸附能从高到低依次为 Fe-MoS2;Co-MoS2;Ni-MoS2;Cu-MoS2;MoS2。与 MoS2 相比,Fe-MoS2 在四种掺杂体系中的吸附效果最好,吸附能提高了 22.1 倍。重要的是,对解吸时间的模拟表明,Fe-MoS2 和 Co-MoS2 的解吸时间随温度升高而显著缩短,并且可以快速循环利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of MoS2 modified with transition metal (Fe, Co, Ni, Cu) on H2O adsorption: A first principle study
MoS2 has great potential as a humidity sensor, and doping is considered the most promising method to enhance the adsorption of H2O molecule by MoS2. Unfortunately, vacancy doping sacrifices the stability of the material while enhancing adsorption efficiency. Here, we use Fe, Co, Ni, Cu to modify the surface of MoS2 and study the adsorption characteristics of H2O molecule on MoS2 before and after modification. The first principles calculations further indicate that partial transition metal (TM) doping can induce spin polarization in MoS2. Spin polarization further enhances orbital hybridization between atoms, thereby improving adsorption performance. On the basis of qualitative analysis of thermodynamic stability and electrical properties, quantitative analysis was conducted on adsorption energy and charge transfer. The results indicate that the adsorption energy, in descending order, is Fe–MoS2 > Co–MoS2 > Ni–MoS2 > Cu–MoS2 > MoS2. Compared with MoS2, Fe–MoS2 has the best adsorption effect among the four doping systems, with an adsorption energy increase of 22.1 times. Importantly, simulations of desorption time have demonstrated that Fe–MoS2 and Co–MoS2 exhibit a significant reduction in desorption time with increasing temperature and can be rapidly recycled.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Research on RF performance of GaN HEMT with graded Al composition AlGaN back-barrier Corrigendum to “Evaluation of sensitivity in a vertically misaligned double-gate electrolyte-insulator-semiconductor extended source tunnel FET as pH sensor” [Micro Nanostruct. 196 (2024) 208005] The impact of barrier modulation on carriers transport in GaN quantum well infrared detectors Interference enhanced SPR-mediated visible-light responsive photocatalysis of periodically ordered ZnO nanorod arrays decorated with Au nanoparticles Optimization of efficiency of CsPbI2Br by using different electron transport and hole transport layers: A DFT and SCAPS-1D simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1