提高卡车编队效率和安全性--变道机动的分布式模型预测控制方法

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Control Engineering Practice Pub Date : 2024-11-12 DOI:10.1016/j.conengprac.2024.106153
Beatriz Lourenço , Daniel Silvestre
{"title":"提高卡车编队效率和安全性--变道机动的分布式模型预测控制方法","authors":"Beatriz Lourenço ,&nbsp;Daniel Silvestre","doi":"10.1016/j.conengprac.2024.106153","DOIUrl":null,"url":null,"abstract":"<div><div>The advent of autonomous driving technologies has paved the way for notable advancements in the realm of transportation systems. This paper explores the dynamic field of truck platooning, focusing on the development of a Nonlinear Model Predictive Control (NMPC) approach within a Cooperative Adaptive Cruise Control (CACC) framework. The research tackles the critical challenges in obstacle avoidance and lane-changing manoeuvres. The core contribution of this work lies in the development and implementation of a novel NMPC algorithm tailored to platoon control. This framework integrates a penalty soft constraint to guarantee obstacle avoidance and maintain platoon coherence while optimising control inputs in real-time. Several experiments, including static and dynamic obstacle avoidance scenarios, validate the efficacy of the proposed approach. In all experiments, the vehicles closely follow one another, resulting in smooth trajectories for all system states and control input signals. Even in the event of abrupt braking by the ego vehicle, the platoon remains cohesive. Moreover, the proposed NMPC proves to be computationally efficient when compared to the state-of-the-art.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"154 ","pages":"Article 106153"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing truck platooning efficiency and safety—A distributed Model Predictive Control approach for lane-changing manoeuvres\",\"authors\":\"Beatriz Lourenço ,&nbsp;Daniel Silvestre\",\"doi\":\"10.1016/j.conengprac.2024.106153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The advent of autonomous driving technologies has paved the way for notable advancements in the realm of transportation systems. This paper explores the dynamic field of truck platooning, focusing on the development of a Nonlinear Model Predictive Control (NMPC) approach within a Cooperative Adaptive Cruise Control (CACC) framework. The research tackles the critical challenges in obstacle avoidance and lane-changing manoeuvres. The core contribution of this work lies in the development and implementation of a novel NMPC algorithm tailored to platoon control. This framework integrates a penalty soft constraint to guarantee obstacle avoidance and maintain platoon coherence while optimising control inputs in real-time. Several experiments, including static and dynamic obstacle avoidance scenarios, validate the efficacy of the proposed approach. In all experiments, the vehicles closely follow one another, resulting in smooth trajectories for all system states and control input signals. Even in the event of abrupt braking by the ego vehicle, the platoon remains cohesive. Moreover, the proposed NMPC proves to be computationally efficient when compared to the state-of-the-art.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"154 \",\"pages\":\"Article 106153\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124003125\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124003125","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶技术的出现为交通系统领域的显著进步铺平了道路。本文探讨了卡车排队行驶的动态领域,重点是在合作自适应巡航控制(CACC)框架内开发非线性模型预测控制(NMPC)方法。该研究解决了避障和变道操纵中的关键难题。这项工作的核心贡献在于开发和实施了一种专为排队控制量身定制的新型 NMPC 算法。该框架集成了惩罚软约束,以保证避障和保持排的一致性,同时实时优化控制输入。包括静态和动态避障场景在内的多项实验验证了所提方法的有效性。在所有实验中,车辆都紧紧相随,从而在所有系统状态和控制输入信号下都能获得平滑的轨迹。即使在 "自我 "车辆突然制动的情况下,车队仍能保持凝聚力。此外,事实证明,与最先进的方法相比,所提出的 NMPC 具有很高的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing truck platooning efficiency and safety—A distributed Model Predictive Control approach for lane-changing manoeuvres
The advent of autonomous driving technologies has paved the way for notable advancements in the realm of transportation systems. This paper explores the dynamic field of truck platooning, focusing on the development of a Nonlinear Model Predictive Control (NMPC) approach within a Cooperative Adaptive Cruise Control (CACC) framework. The research tackles the critical challenges in obstacle avoidance and lane-changing manoeuvres. The core contribution of this work lies in the development and implementation of a novel NMPC algorithm tailored to platoon control. This framework integrates a penalty soft constraint to guarantee obstacle avoidance and maintain platoon coherence while optimising control inputs in real-time. Several experiments, including static and dynamic obstacle avoidance scenarios, validate the efficacy of the proposed approach. In all experiments, the vehicles closely follow one another, resulting in smooth trajectories for all system states and control input signals. Even in the event of abrupt braking by the ego vehicle, the platoon remains cohesive. Moreover, the proposed NMPC proves to be computationally efficient when compared to the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
期刊最新文献
Physical-anchored graph learning for process key indicator prediction Predictive sliding mode control for flexible spacecraft attitude tracking with multiple disturbances Spatial–temporal cooperative guidance with no-fly zones avoidance Sliding-mode energy management strategy for dual-source electric vehicles handling battery rate of change of current Optimization of the energy-comfort trade-off of HVAC systems in electric city buses based on a steady-state model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1