铁磁性和富含缺陷的 Fe3O4-CC 纳米线调节 Li2S 沉积,实现稳定的锂硫电池

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-11 DOI:10.1016/j.jpowsour.2024.235785
Naomie Beolle Songwe Selabi , Yingke Zhou , Lukang Che , Mengdie Liu , Luozhi Mo , Lesly Dasilva Wandji Djouonkep , Xiaohui Tian
{"title":"铁磁性和富含缺陷的 Fe3O4-CC 纳米线调节 Li2S 沉积,实现稳定的锂硫电池","authors":"Naomie Beolle Songwe Selabi ,&nbsp;Yingke Zhou ,&nbsp;Lukang Che ,&nbsp;Mengdie Liu ,&nbsp;Luozhi Mo ,&nbsp;Lesly Dasilva Wandji Djouonkep ,&nbsp;Xiaohui Tian","doi":"10.1016/j.jpowsour.2024.235785","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-sulfur (Li-S) batteries with superior energy storage capabilities, stand out as the next-generation battery technology surpassing conventional lithium batteries. Unfortunately, the sluggish kinetics of the sulfur reaction and the uncontrollable deposition of insulated Li<sub>2</sub>S significantly limit the efficiency of the battery. In this work, a morphology control method was employed to modulate the intrinsic properties of iron oxide catalyst and accelerate the LiPSs conversion kinetics. The uniform distributed nanowire provides abundant nucleation sites for the effective deposition of 3D Li<sub>2</sub>S, providing high sulfur utilization and stable Li-S battery. In the action of intrinsic magnetic forces, the Fe<sub>3</sub>O<sub>4</sub>-CC fastens the redox reaction and alleviates the shuttle of LiPSs. The optimized Fe<sub>3</sub>O<sub>4</sub>-CC@S cathode exhibits high-capacity (5.9 mAh/cm<sup>2</sup>) with a high mass loading (5.6 mg/cm<sup>2</sup>) at 0.1C, as well as good cycle performance. This study highlights a novel strategy to stimulate high catalytic activity to enhance the conversion reaction of LiPSs, promoting the practical use of Li-S batteries as next-generation energy storage.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"626 ","pages":"Article 235785"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferromagnetic and defect-rich Fe3O4-CC nanowires regulating Li2S deposition for stable lithium-sulfur batteries\",\"authors\":\"Naomie Beolle Songwe Selabi ,&nbsp;Yingke Zhou ,&nbsp;Lukang Che ,&nbsp;Mengdie Liu ,&nbsp;Luozhi Mo ,&nbsp;Lesly Dasilva Wandji Djouonkep ,&nbsp;Xiaohui Tian\",\"doi\":\"10.1016/j.jpowsour.2024.235785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-sulfur (Li-S) batteries with superior energy storage capabilities, stand out as the next-generation battery technology surpassing conventional lithium batteries. Unfortunately, the sluggish kinetics of the sulfur reaction and the uncontrollable deposition of insulated Li<sub>2</sub>S significantly limit the efficiency of the battery. In this work, a morphology control method was employed to modulate the intrinsic properties of iron oxide catalyst and accelerate the LiPSs conversion kinetics. The uniform distributed nanowire provides abundant nucleation sites for the effective deposition of 3D Li<sub>2</sub>S, providing high sulfur utilization and stable Li-S battery. In the action of intrinsic magnetic forces, the Fe<sub>3</sub>O<sub>4</sub>-CC fastens the redox reaction and alleviates the shuttle of LiPSs. The optimized Fe<sub>3</sub>O<sub>4</sub>-CC@S cathode exhibits high-capacity (5.9 mAh/cm<sup>2</sup>) with a high mass loading (5.6 mg/cm<sup>2</sup>) at 0.1C, as well as good cycle performance. This study highlights a novel strategy to stimulate high catalytic activity to enhance the conversion reaction of LiPSs, promoting the practical use of Li-S batteries as next-generation energy storage.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"626 \",\"pages\":\"Article 235785\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324017373\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017373","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂硫(Li-S)电池具有卓越的储能能力,是超越传统锂电池的新一代电池技术。遗憾的是,硫反应的缓慢动力学和绝缘锂硫的不可控沉积大大限制了电池的效率。在这项工作中,采用了一种形态控制方法来调节氧化铁催化剂的内在特性,并加速锂离子电池的转化动力学。均匀分布的纳米线为三维 Li2S 的有效沉积提供了丰富的成核位点,从而提供了高硫利用率和稳定的锂离子电池。在固有磁力的作用下,Fe3O4-CC 加快了氧化还原反应,减轻了锂离子电池的穿梭。优化后的 Fe3O4-CC@S 正极在 0.1C 时以较高的质量负载(5.6 mg/cm2)表现出较高的容量(5.9 mAh/cm2)以及良好的循环性能。这项研究强调了一种激发高催化活性以增强锂离子电池转化反应的新策略,从而促进了锂离子电池作为下一代储能装置的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ferromagnetic and defect-rich Fe3O4-CC nanowires regulating Li2S deposition for stable lithium-sulfur batteries
Lithium-sulfur (Li-S) batteries with superior energy storage capabilities, stand out as the next-generation battery technology surpassing conventional lithium batteries. Unfortunately, the sluggish kinetics of the sulfur reaction and the uncontrollable deposition of insulated Li2S significantly limit the efficiency of the battery. In this work, a morphology control method was employed to modulate the intrinsic properties of iron oxide catalyst and accelerate the LiPSs conversion kinetics. The uniform distributed nanowire provides abundant nucleation sites for the effective deposition of 3D Li2S, providing high sulfur utilization and stable Li-S battery. In the action of intrinsic magnetic forces, the Fe3O4-CC fastens the redox reaction and alleviates the shuttle of LiPSs. The optimized Fe3O4-CC@S cathode exhibits high-capacity (5.9 mAh/cm2) with a high mass loading (5.6 mg/cm2) at 0.1C, as well as good cycle performance. This study highlights a novel strategy to stimulate high catalytic activity to enhance the conversion reaction of LiPSs, promoting the practical use of Li-S batteries as next-generation energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
In-situ generated sulfur/porous carbon nanocomposites featuring enhanced specific surface area for aqueous zinc-sulfur batteries with small electrochemical polarization Self-assembled zinc polyethylenimine shield for long-lasting zinc anodes Polyimide dielectrics sandwiched by large-bandgap Al2O3 for high-temperature energy storage Enhancing sodium ion transport in batteries through a crosslinked ceramic network-coated polyethylene (PE) separator Multi-objective optimized energy management strategy using an artificial tree algorithm for extended range hybrid loaders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1