聚合物纳米复合材料中的空间约束自组装氮化硼纳米片夹层显著提高了电容储能性能

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-12 DOI:10.1016/j.jpowsour.2024.235822
Jian Wang , Yingying Zheng , Yifei Zhang , Xiang Ma , Honghong Gong , Biyun Peng , Sen Liang , Yunchuan Xie , Wenying Zhou
{"title":"聚合物纳米复合材料中的空间约束自组装氮化硼纳米片夹层显著提高了电容储能性能","authors":"Jian Wang ,&nbsp;Yingying Zheng ,&nbsp;Yifei Zhang ,&nbsp;Xiang Ma ,&nbsp;Honghong Gong ,&nbsp;Biyun Peng ,&nbsp;Sen Liang ,&nbsp;Yunchuan Xie ,&nbsp;Wenying Zhou","doi":"10.1016/j.jpowsour.2024.235822","DOIUrl":null,"url":null,"abstract":"<div><div>High-performance electrostatic capacitors are urgently needed of advanced electronic devices. Traditional nanodielectric designs, such as polyvinylidene fluoride (PVDF)-based nanocomposites with uniformly distributed nanofillers, necessitate laborious filler interface modification and yield limited energy density (<em>U</em><sub>e</sub>) and efficiency (<em>η</em>). Herein, boron nitride nanosheet (BNNS) intercalated polymer nanocomposites were innovatively prepared by plasma treatment and BNNS spatially-confined self-assembly techniques. The oriented dense interlayered BNNS substantially suppresses leakage current and bolsters the breakdown strength of nanocomposite films, outperforming randomly or oriented distributed BNNS systems, thus obtaining a higher <em>U</em><sub>e</sub> of ∼24.1 J/cm<sup>3</sup>. Moreover, the relaxation loss of PVDF could be effectively mitigated by polymethyl methacrylate and trace intercalated BNNS, maintaining an ultrahigh <em>η</em> (76 %) at 600 MV/m and greatly enhances the energy storage performance. Significantly, this newly designed nanocomposites necessitate only traces of BNNS (0.2 wt%) without filler-surface-modification. These findings afford insight into the programming and manufacture of high-performance electrostatic capacitors.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"626 ","pages":"Article 235822"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially-confined self-assembly boron nitride nanosheet interlayer in polymer nanocomposites significantly enhances the Capacitive energy storage performance\",\"authors\":\"Jian Wang ,&nbsp;Yingying Zheng ,&nbsp;Yifei Zhang ,&nbsp;Xiang Ma ,&nbsp;Honghong Gong ,&nbsp;Biyun Peng ,&nbsp;Sen Liang ,&nbsp;Yunchuan Xie ,&nbsp;Wenying Zhou\",\"doi\":\"10.1016/j.jpowsour.2024.235822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-performance electrostatic capacitors are urgently needed of advanced electronic devices. Traditional nanodielectric designs, such as polyvinylidene fluoride (PVDF)-based nanocomposites with uniformly distributed nanofillers, necessitate laborious filler interface modification and yield limited energy density (<em>U</em><sub>e</sub>) and efficiency (<em>η</em>). Herein, boron nitride nanosheet (BNNS) intercalated polymer nanocomposites were innovatively prepared by plasma treatment and BNNS spatially-confined self-assembly techniques. The oriented dense interlayered BNNS substantially suppresses leakage current and bolsters the breakdown strength of nanocomposite films, outperforming randomly or oriented distributed BNNS systems, thus obtaining a higher <em>U</em><sub>e</sub> of ∼24.1 J/cm<sup>3</sup>. Moreover, the relaxation loss of PVDF could be effectively mitigated by polymethyl methacrylate and trace intercalated BNNS, maintaining an ultrahigh <em>η</em> (76 %) at 600 MV/m and greatly enhances the energy storage performance. Significantly, this newly designed nanocomposites necessitate only traces of BNNS (0.2 wt%) without filler-surface-modification. These findings afford insight into the programming and manufacture of high-performance electrostatic capacitors.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"626 \",\"pages\":\"Article 235822\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324017749\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017749","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高性能静电电容器是先进电子设备的迫切需要。传统的纳米电容器设计,如基于聚偏二氟乙烯(PVDF)和均匀分布的纳米填料的纳米复合材料,需要对填料界面进行费力的改性,且能量密度(Ue)和效率(η)有限。本文通过等离子体处理和氮化硼纳米片(BNNS)空间约束自组装技术,创新性地制备了氮化硼纳米片(BNNS)插层聚合物纳米复合材料。取向致密的互层 BNNS 大大抑制了漏电流,提高了纳米复合薄膜的击穿强度,优于随机或取向分布的 BNNS 系统,从而获得了 ∼24.1 J/cm3 的较高 Ue。此外,聚甲基丙烯酸甲酯和微量插层 BNNS 还能有效缓解 PVDF 的弛豫损耗,在 600 MV/m 时保持超高 η (76%),大大提高了储能性能。值得注意的是,这种新设计的纳米复合材料只需添加微量 BNNS(0.2 wt%),而无需进行填料表面改性。这些发现为高性能静电电容器的编程和制造提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatially-confined self-assembly boron nitride nanosheet interlayer in polymer nanocomposites significantly enhances the Capacitive energy storage performance
High-performance electrostatic capacitors are urgently needed of advanced electronic devices. Traditional nanodielectric designs, such as polyvinylidene fluoride (PVDF)-based nanocomposites with uniformly distributed nanofillers, necessitate laborious filler interface modification and yield limited energy density (Ue) and efficiency (η). Herein, boron nitride nanosheet (BNNS) intercalated polymer nanocomposites were innovatively prepared by plasma treatment and BNNS spatially-confined self-assembly techniques. The oriented dense interlayered BNNS substantially suppresses leakage current and bolsters the breakdown strength of nanocomposite films, outperforming randomly or oriented distributed BNNS systems, thus obtaining a higher Ue of ∼24.1 J/cm3. Moreover, the relaxation loss of PVDF could be effectively mitigated by polymethyl methacrylate and trace intercalated BNNS, maintaining an ultrahigh η (76 %) at 600 MV/m and greatly enhances the energy storage performance. Significantly, this newly designed nanocomposites necessitate only traces of BNNS (0.2 wt%) without filler-surface-modification. These findings afford insight into the programming and manufacture of high-performance electrostatic capacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
In-situ generated sulfur/porous carbon nanocomposites featuring enhanced specific surface area for aqueous zinc-sulfur batteries with small electrochemical polarization Self-assembled zinc polyethylenimine shield for long-lasting zinc anodes Polyimide dielectrics sandwiched by large-bandgap Al2O3 for high-temperature energy storage Enhancing sodium ion transport in batteries through a crosslinked ceramic network-coated polyethylene (PE) separator Multi-objective optimized energy management strategy using an artificial tree algorithm for extended range hybrid loaders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1