Juhyun Kang , Masoud Shirzad , Ji Min Seok , Won-Kyo Jung , Seung Yun Nam
{"title":"通过整合辅助结构和传统结构增强多孔支架的机械性能","authors":"Juhyun Kang , Masoud Shirzad , Ji Min Seok , Won-Kyo Jung , Seung Yun Nam","doi":"10.1016/j.matlet.2024.137675","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing has revolutionized the fabrication of various porous structures using diverse biomaterials for preclinical and clinical applications. However, hybrid structures combining conventional and auxetic structures have been seldom explored, despite their immense potential for biomedical applications. This study aims to design various hybrid auxetic and conventional structures and demonstrate their mechanical properties using porous composite polycaprolactone/hydroxyapatite (PCL/HA) biomaterials. Our findings reveal that newly suggested structures can enhance Young’s modulus, yield stress, and energy absorption by up to 98.64%, 99.27%, and 98.61%, respectively, compared to the conventional structures. Moreover, all fabricated scaffolds exhibit porosity exceeding 90%, ensuring their suitability for tissue engineering applications.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"379 ","pages":"Article 137675"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical enhancement of porous scaffolds through integration of auxetic and conventional structures\",\"authors\":\"Juhyun Kang , Masoud Shirzad , Ji Min Seok , Won-Kyo Jung , Seung Yun Nam\",\"doi\":\"10.1016/j.matlet.2024.137675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Additive manufacturing has revolutionized the fabrication of various porous structures using diverse biomaterials for preclinical and clinical applications. However, hybrid structures combining conventional and auxetic structures have been seldom explored, despite their immense potential for biomedical applications. This study aims to design various hybrid auxetic and conventional structures and demonstrate their mechanical properties using porous composite polycaprolactone/hydroxyapatite (PCL/HA) biomaterials. Our findings reveal that newly suggested structures can enhance Young’s modulus, yield stress, and energy absorption by up to 98.64%, 99.27%, and 98.61%, respectively, compared to the conventional structures. Moreover, all fabricated scaffolds exhibit porosity exceeding 90%, ensuring their suitability for tissue engineering applications.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"379 \",\"pages\":\"Article 137675\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X24018159\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018159","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical enhancement of porous scaffolds through integration of auxetic and conventional structures
Additive manufacturing has revolutionized the fabrication of various porous structures using diverse biomaterials for preclinical and clinical applications. However, hybrid structures combining conventional and auxetic structures have been seldom explored, despite their immense potential for biomedical applications. This study aims to design various hybrid auxetic and conventional structures and demonstrate their mechanical properties using porous composite polycaprolactone/hydroxyapatite (PCL/HA) biomaterials. Our findings reveal that newly suggested structures can enhance Young’s modulus, yield stress, and energy absorption by up to 98.64%, 99.27%, and 98.61%, respectively, compared to the conventional structures. Moreover, all fabricated scaffolds exhibit porosity exceeding 90%, ensuring their suitability for tissue engineering applications.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive