{"title":"增强掺杂 CdS 的 TiO2/rGO 纳米复合材料的光催化性能","authors":"Evgeniya Seliverstova , Timur Serikov , Aigul Sadykova , Niyazbek Ibrayev , Nurxat Nuraje","doi":"10.1016/j.matlet.2024.137660","DOIUrl":null,"url":null,"abstract":"<div><div>To increase the photocatalytic activity of nanocomposite based on TiO<sub>2</sub> and rGO (NC) and improve its photosensitivity in the visible region of the spectrum, the influence of CdS concentration (1 to 10 wt% with respect to NC) on its physicochemical and photocatalytic properties was studied. The addition of CdS to NC leads to a significant increase in the photocatalytic activity. An almost fivefold increase in photocurrent compared to pure NC was registered for NC/CdS_5%. Data on Methylene blue photodegradation showed that after 210 min of irradiation, only 5 % of dye molecules remained in solution. This value is 14.4 and 11.6 times higher than that of pure NC or CdS, respectively. Enhanced photocatalytic activity is related both to the improvement of NC absorption in the region of 400–800 nm and the decrease of the band gap width of NC upon addition of CdS, as well as the significant change in the electrophysical characteristics of the nanocomposite.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"379 ","pages":"Article 137660"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photocatalytic properties of TiO2/rGO nanocomposites Doped with CdS\",\"authors\":\"Evgeniya Seliverstova , Timur Serikov , Aigul Sadykova , Niyazbek Ibrayev , Nurxat Nuraje\",\"doi\":\"10.1016/j.matlet.2024.137660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To increase the photocatalytic activity of nanocomposite based on TiO<sub>2</sub> and rGO (NC) and improve its photosensitivity in the visible region of the spectrum, the influence of CdS concentration (1 to 10 wt% with respect to NC) on its physicochemical and photocatalytic properties was studied. The addition of CdS to NC leads to a significant increase in the photocatalytic activity. An almost fivefold increase in photocurrent compared to pure NC was registered for NC/CdS_5%. Data on Methylene blue photodegradation showed that after 210 min of irradiation, only 5 % of dye molecules remained in solution. This value is 14.4 and 11.6 times higher than that of pure NC or CdS, respectively. Enhanced photocatalytic activity is related both to the improvement of NC absorption in the region of 400–800 nm and the decrease of the band gap width of NC upon addition of CdS, as well as the significant change in the electrophysical characteristics of the nanocomposite.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"379 \",\"pages\":\"Article 137660\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X24018007\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018007","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced photocatalytic properties of TiO2/rGO nanocomposites Doped with CdS
To increase the photocatalytic activity of nanocomposite based on TiO2 and rGO (NC) and improve its photosensitivity in the visible region of the spectrum, the influence of CdS concentration (1 to 10 wt% with respect to NC) on its physicochemical and photocatalytic properties was studied. The addition of CdS to NC leads to a significant increase in the photocatalytic activity. An almost fivefold increase in photocurrent compared to pure NC was registered for NC/CdS_5%. Data on Methylene blue photodegradation showed that after 210 min of irradiation, only 5 % of dye molecules remained in solution. This value is 14.4 and 11.6 times higher than that of pure NC or CdS, respectively. Enhanced photocatalytic activity is related both to the improvement of NC absorption in the region of 400–800 nm and the decrease of the band gap width of NC upon addition of CdS, as well as the significant change in the electrophysical characteristics of the nanocomposite.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive