Xianjun Zhu , Ya Shen , Ileana Florea , Pere Roca i Cabarrocas , Wanghua Chen
{"title":"通过梯度法合成锡催化的 Ge 纳米线和 Ge/Si 异质结构","authors":"Xianjun Zhu , Ya Shen , Ileana Florea , Pere Roca i Cabarrocas , Wanghua Chen","doi":"10.1016/j.matlet.2024.137674","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the growth of Ge nanowires (NWs) using a gas supply gradient method during plasma-enhanced chemical vapor deposition (PECVD), focusing on the effects of GeH<sub>4</sub> partial pressure and total chamber pressure on NWs morphology. By adjusting either the GeH<sub>4</sub> flow rate or the total pressure, we explored a gradient method to manipulate the growth process. Scanning electron microscopy (SEM) images revealed that, even with constant GeH<sub>4</sub> partial pressure, variations in total pressure significantly influenced NWs diameter and structure. Furthermore, elemental mapping and compositional analysis demonstrated the presence of a Ge/Si heterostructure with a Sn catalyst at the apex and an amorphous Si layer encapsulating the NW surface.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"379 ","pages":"Article 137674"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Sn-catalyzed Ge nanowires and Ge/Si heterostructures via a gradient method\",\"authors\":\"Xianjun Zhu , Ya Shen , Ileana Florea , Pere Roca i Cabarrocas , Wanghua Chen\",\"doi\":\"10.1016/j.matlet.2024.137674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we investigate the growth of Ge nanowires (NWs) using a gas supply gradient method during plasma-enhanced chemical vapor deposition (PECVD), focusing on the effects of GeH<sub>4</sub> partial pressure and total chamber pressure on NWs morphology. By adjusting either the GeH<sub>4</sub> flow rate or the total pressure, we explored a gradient method to manipulate the growth process. Scanning electron microscopy (SEM) images revealed that, even with constant GeH<sub>4</sub> partial pressure, variations in total pressure significantly influenced NWs diameter and structure. Furthermore, elemental mapping and compositional analysis demonstrated the presence of a Ge/Si heterostructure with a Sn catalyst at the apex and an amorphous Si layer encapsulating the NW surface.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"379 \",\"pages\":\"Article 137674\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X24018147\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018147","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of Sn-catalyzed Ge nanowires and Ge/Si heterostructures via a gradient method
In this study, we investigate the growth of Ge nanowires (NWs) using a gas supply gradient method during plasma-enhanced chemical vapor deposition (PECVD), focusing on the effects of GeH4 partial pressure and total chamber pressure on NWs morphology. By adjusting either the GeH4 flow rate or the total pressure, we explored a gradient method to manipulate the growth process. Scanning electron microscopy (SEM) images revealed that, even with constant GeH4 partial pressure, variations in total pressure significantly influenced NWs diameter and structure. Furthermore, elemental mapping and compositional analysis demonstrated the presence of a Ge/Si heterostructure with a Sn catalyst at the apex and an amorphous Si layer encapsulating the NW surface.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive