Dawei Feng , Xinye Fu , Jianing Chen , Liang Zhu , Qi Zhao , Ohi H.M. Ikra Amir
{"title":"电弧烧蚀掺杂 Mo 或 W 的铜铬接触材料的分子动力学模拟","authors":"Dawei Feng , Xinye Fu , Jianing Chen , Liang Zhu , Qi Zhao , Ohi H.M. Ikra Amir","doi":"10.1016/j.matlet.2024.137734","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the ablation resistance of the contact material in vacuum circuit breakers (VCBs), molecular dynamics (MD) was used to simulate the microscopic arc ablation process. Reinforced CuCr alloys doped with elements Mo or W were designed using ablative mass as the characteristic parameter for ablation resistance. The results demonstrate that Mo or W doping can improve the ablation resistance of the alloys to some extent, and the doped alloys have better ablation resistance than CuCr<sub>50</sub>. Moreover, Mo or W-doped CuCr alloys with an original Cu content of 70–80 at%, which have less ablative mass than CuCr<sub>50</sub>, are most suitable for improving the contacts’ ablation resistance.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"379 ","pages":"Article 137734"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics simulation of arc ablation on Mo or W doped CuCr contact materials\",\"authors\":\"Dawei Feng , Xinye Fu , Jianing Chen , Liang Zhu , Qi Zhao , Ohi H.M. Ikra Amir\",\"doi\":\"10.1016/j.matlet.2024.137734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To improve the ablation resistance of the contact material in vacuum circuit breakers (VCBs), molecular dynamics (MD) was used to simulate the microscopic arc ablation process. Reinforced CuCr alloys doped with elements Mo or W were designed using ablative mass as the characteristic parameter for ablation resistance. The results demonstrate that Mo or W doping can improve the ablation resistance of the alloys to some extent, and the doped alloys have better ablation resistance than CuCr<sub>50</sub>. Moreover, Mo or W-doped CuCr alloys with an original Cu content of 70–80 at%, which have less ablative mass than CuCr<sub>50</sub>, are most suitable for improving the contacts’ ablation resistance.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"379 \",\"pages\":\"Article 137734\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X24018743\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018743","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为了提高真空断路器(VCB)中触头材料的耐烧蚀性,采用分子动力学(MD)模拟了微观电弧烧蚀过程。以烧蚀质量作为耐烧蚀性的特征参数,设计了掺杂 Mo 或 W 元素的增强型铜铬合金。结果表明,掺杂 Mo 或 W 能在一定程度上提高合金的抗烧蚀性,掺杂合金的抗烧蚀性优于 CuCr50。此外,原始铜含量为 70-80% 的掺 Mo 或掺 W CuCr 合金的烧蚀质量比 CuCr50 小,最适合用于改善触头的耐烧蚀性。
Molecular dynamics simulation of arc ablation on Mo or W doped CuCr contact materials
To improve the ablation resistance of the contact material in vacuum circuit breakers (VCBs), molecular dynamics (MD) was used to simulate the microscopic arc ablation process. Reinforced CuCr alloys doped with elements Mo or W were designed using ablative mass as the characteristic parameter for ablation resistance. The results demonstrate that Mo or W doping can improve the ablation resistance of the alloys to some extent, and the doped alloys have better ablation resistance than CuCr50. Moreover, Mo or W-doped CuCr alloys with an original Cu content of 70–80 at%, which have less ablative mass than CuCr50, are most suitable for improving the contacts’ ablation resistance.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive