基于新型自监督预训练深度学习网络的软扫描电子显微镜,用于高效分割合金微结构

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2024-11-07 DOI:10.1016/j.matchar.2024.114532
Jinhan Zhang , Jingtai Yu , Xiaoran Wei , Kun Zhou , Weifei Niu , Yushun Wei , Cong Zhao , Gang Chen , Fengmin Jin , Kai Song
{"title":"基于新型自监督预训练深度学习网络的软扫描电子显微镜,用于高效分割合金微结构","authors":"Jinhan Zhang ,&nbsp;Jingtai Yu ,&nbsp;Xiaoran Wei ,&nbsp;Kun Zhou ,&nbsp;Weifei Niu ,&nbsp;Yushun Wei ,&nbsp;Cong Zhao ,&nbsp;Gang Chen ,&nbsp;Fengmin Jin ,&nbsp;Kai Song","doi":"10.1016/j.matchar.2024.114532","DOIUrl":null,"url":null,"abstract":"<div><div>To provide an on-site metallographic segmentation using only optical microscopy images, sSEM-Net, a soft scanning electron microscopy network, is developed based on a self-supervised pre-training deep learning framework. During model training, only a sparse collection of SEM images is necessary for annotation assistance. By integrating CNN and Transformer, sSEM-Net efficiently utilizes global context information while mitigating data dependency and computational resource constraints. Using only readily available optical microscopy images as input, sSEM-Net achieves metallographic segmentation comparable to SEM images, catering to rapid and cost-effective industrial needs. This methodology leverages non-destructive inspection attributes, catering to rapid and cost-sensitive industrial requirements. The efficacy of the proposed sSEM-Net is demonstrated through metallographic structure analysis of TC4 titanium alloy, with potential extensions to other alloy types.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114532"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A soft scanning electron microscopy for efficient segmentation of alloy microstructures based on a new self-supervised pre-training deep learning network\",\"authors\":\"Jinhan Zhang ,&nbsp;Jingtai Yu ,&nbsp;Xiaoran Wei ,&nbsp;Kun Zhou ,&nbsp;Weifei Niu ,&nbsp;Yushun Wei ,&nbsp;Cong Zhao ,&nbsp;Gang Chen ,&nbsp;Fengmin Jin ,&nbsp;Kai Song\",\"doi\":\"10.1016/j.matchar.2024.114532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To provide an on-site metallographic segmentation using only optical microscopy images, sSEM-Net, a soft scanning electron microscopy network, is developed based on a self-supervised pre-training deep learning framework. During model training, only a sparse collection of SEM images is necessary for annotation assistance. By integrating CNN and Transformer, sSEM-Net efficiently utilizes global context information while mitigating data dependency and computational resource constraints. Using only readily available optical microscopy images as input, sSEM-Net achieves metallographic segmentation comparable to SEM images, catering to rapid and cost-effective industrial needs. This methodology leverages non-destructive inspection attributes, catering to rapid and cost-sensitive industrial requirements. The efficacy of the proposed sSEM-Net is demonstrated through metallographic structure analysis of TC4 titanium alloy, with potential extensions to other alloy types.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"218 \",\"pages\":\"Article 114532\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324009136\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009136","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

为了仅使用光学显微镜图像进行现场金相分割,我们基于自监督预训练深度学习框架开发了软扫描电子显微镜网络 sSEM-Net。在模型训练过程中,只需收集稀疏的扫描电子显微镜图像作为注释辅助。通过集成 CNN 和 Transformer,sSEM-Net 可有效利用全局上下文信息,同时减轻数据依赖性和计算资源限制。仅使用现成的光学显微镜图像作为输入,sSEM-Net 就能实现与 SEM 图像相当的金相分割,满足了快速、经济高效的工业需求。该方法利用非破坏性检测属性,满足了快速和成本敏感型工业需求。通过对 TC4 钛合金的金相结构分析,展示了所提出的 sSEM-Net 的功效,并有可能扩展到其他合金类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A soft scanning electron microscopy for efficient segmentation of alloy microstructures based on a new self-supervised pre-training deep learning network
To provide an on-site metallographic segmentation using only optical microscopy images, sSEM-Net, a soft scanning electron microscopy network, is developed based on a self-supervised pre-training deep learning framework. During model training, only a sparse collection of SEM images is necessary for annotation assistance. By integrating CNN and Transformer, sSEM-Net efficiently utilizes global context information while mitigating data dependency and computational resource constraints. Using only readily available optical microscopy images as input, sSEM-Net achieves metallographic segmentation comparable to SEM images, catering to rapid and cost-effective industrial needs. This methodology leverages non-destructive inspection attributes, catering to rapid and cost-sensitive industrial requirements. The efficacy of the proposed sSEM-Net is demonstrated through metallographic structure analysis of TC4 titanium alloy, with potential extensions to other alloy types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Evolution of microstructures in laser additive manufactured HT-9 ferritic martensitic steel Enhanced mechanical properties of lightweight refractory high-entropy alloys at elevated temperatures via Si addition Effects of ZrC addition on the recrystallization behavior of ZrC-dispersion strengthened FeCrAl alloys Comprehensive analysis of beryllium content influence on secondary electron yield in CuBe alloys Direct observation of the evolution behavior of micro to nanoscale precipitates in austenitic heat-resistant steel via electron channeling contrast imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1