晶粒尺寸对纳米结晶镍钛合金析出和微应变的影响

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2024-11-12 DOI:10.1016/j.matchar.2024.114549
Penghui Li , Wang Tang , Qihang Shen , Xiaobin Shi , Ping Liu
{"title":"晶粒尺寸对纳米结晶镍钛合金析出和微应变的影响","authors":"Penghui Li ,&nbsp;Wang Tang ,&nbsp;Qihang Shen ,&nbsp;Xiaobin Shi ,&nbsp;Ping Liu","doi":"10.1016/j.matchar.2024.114549","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of aging treatment on the microstructure, phase transformation behavior and mechanical properties of nanocrystalline NiTi alloy was studied. The nanocrystalline NiTi alloys with different grain sizes were acquired by cold drawing followed by annealing at 350–500 °C for 10 min. The annealed samples were aged at 250–400 °C for 48 h. The Ti<sub>3</sub>Ni<sub>4</sub> precipitates were found in aged nanocrystalline NiTi alloys. In the sample with smaller average nanograin size, the precipitates were found at the edge of grain boundaries and little lattice strain was shown in R phase matrix. In the sample with larger average grain size, the precipitates were found in the nanograins and exhibited a coherent interface with the matrix. The nanocrystalline R phase NiTi matrix exhibited a significant compressive stress at the end of the coherent precipitate. The coherent precipitates in sample aged at 250 °C after annealing at 500 °C suppress the stress-induced R → B19′ phase transformation and increased the upper plateau stress. The precipitation in sample aged at 250 °C after annealing at 350 °C unable to suppress the martensitic transformation effectively.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114549"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of grain size on precipitation and microstrain of nanocrystalline NiTi alloys\",\"authors\":\"Penghui Li ,&nbsp;Wang Tang ,&nbsp;Qihang Shen ,&nbsp;Xiaobin Shi ,&nbsp;Ping Liu\",\"doi\":\"10.1016/j.matchar.2024.114549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of aging treatment on the microstructure, phase transformation behavior and mechanical properties of nanocrystalline NiTi alloy was studied. The nanocrystalline NiTi alloys with different grain sizes were acquired by cold drawing followed by annealing at 350–500 °C for 10 min. The annealed samples were aged at 250–400 °C for 48 h. The Ti<sub>3</sub>Ni<sub>4</sub> precipitates were found in aged nanocrystalline NiTi alloys. In the sample with smaller average nanograin size, the precipitates were found at the edge of grain boundaries and little lattice strain was shown in R phase matrix. In the sample with larger average grain size, the precipitates were found in the nanograins and exhibited a coherent interface with the matrix. The nanocrystalline R phase NiTi matrix exhibited a significant compressive stress at the end of the coherent precipitate. The coherent precipitates in sample aged at 250 °C after annealing at 500 °C suppress the stress-induced R → B19′ phase transformation and increased the upper plateau stress. The precipitation in sample aged at 250 °C after annealing at 350 °C unable to suppress the martensitic transformation effectively.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"218 \",\"pages\":\"Article 114549\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324009306\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324009306","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

研究了时效处理对纳米晶镍钛合金微观结构、相变行为和力学性能的影响。不同晶粒大小的纳米晶镍钛合金是通过冷拔获得的,然后在 350-500 °C 下退火 10 分钟。退火后的样品在 250-400 ℃ 下进行 48 小时的时效处理。在平均纳米晶粒尺寸较小的样品中,析出物出现在晶界边缘,R 相基体中的晶格应变很小。在平均晶粒尺寸较大的样品中,析出物出现在纳米晶粒中,并与基体呈现出一致的界面。纳米晶 R 相镍钛基体在相干析出物末端表现出显著的压应力。在 500 °C 退火后于 250 °C 老化的样品中的相干析出物抑制了应力诱导的 R → B19′ 相变,并增加了上平台应力。350 ℃退火后 250 ℃老化的样品中的析出物无法有效抑制马氏体转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of grain size on precipitation and microstrain of nanocrystalline NiTi alloys
The effect of aging treatment on the microstructure, phase transformation behavior and mechanical properties of nanocrystalline NiTi alloy was studied. The nanocrystalline NiTi alloys with different grain sizes were acquired by cold drawing followed by annealing at 350–500 °C for 10 min. The annealed samples were aged at 250–400 °C for 48 h. The Ti3Ni4 precipitates were found in aged nanocrystalline NiTi alloys. In the sample with smaller average nanograin size, the precipitates were found at the edge of grain boundaries and little lattice strain was shown in R phase matrix. In the sample with larger average grain size, the precipitates were found in the nanograins and exhibited a coherent interface with the matrix. The nanocrystalline R phase NiTi matrix exhibited a significant compressive stress at the end of the coherent precipitate. The coherent precipitates in sample aged at 250 °C after annealing at 500 °C suppress the stress-induced R → B19′ phase transformation and increased the upper plateau stress. The precipitation in sample aged at 250 °C after annealing at 350 °C unable to suppress the martensitic transformation effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Ferrite formation and decomposition in 316H austenitic stainless steel electro slag remelting ingot for nuclear power applications Enhancement of mechanical and electrical properties of copper matrix composites by different types of carbon nanotubes Heterogeneous Fe-Mn-Al-C lightweight steel breaking the strength-ductility trade-off via high-temperature warm rolling process Cavity self-healing mechanism at the interface of high-Cr ferritic steel/austenitic steel dissimilar diffusion-bonded joint during cyclic phase transformation treatment Strength and plasticity coordination improvement mechanism in network structure TiBw/TA15 composite via multi-DOF forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1