{"title":"结合游客需求和景区特点构建智慧旅游系统","authors":"Xiqiong Wang","doi":"10.1016/j.sasc.2024.200168","DOIUrl":null,"url":null,"abstract":"<div><div>The demand for travel is increasing as human living conditions rise. The paper presents a smart tourism system architecture that incorporates visitors' demands and scenario characteristics, and performs path planning using path search algorithms and selective tour path recommendation algorithms, in order to improve tourists' travelling experiences and save them time. The experimental data showed that the enhanced heuristic search algorithm visited 122 nodes, which is 62.9% and 52.3% less than the sparrow search algorithm and the improved genetic search strategy, respectively. The number of iterations required to reach convergence for the selective tour path recommendation algorithm, genetic algorithm, discrete particle swarm algorithm, and genetic particle swarm algorithm, respectively, was 39, 90, 85, and 63, indicating that the proposed selective tour path recommendation algorithm has the fastest computational speed. The accuracy, stability, user satisfaction, and overall rating of the smart tourism system that integrates tourists' needs and scenario characteristics are all higher than those of the three types of tourism systems, such as the iBeacon Smart Tourism System, indicating that this smart tourism system is the best to use, helping to enhance tourists' experiences and promote the robust development of the tourism industry.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200168"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of smart tourism system integrating tourist needs and scene characteristics\",\"authors\":\"Xiqiong Wang\",\"doi\":\"10.1016/j.sasc.2024.200168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The demand for travel is increasing as human living conditions rise. The paper presents a smart tourism system architecture that incorporates visitors' demands and scenario characteristics, and performs path planning using path search algorithms and selective tour path recommendation algorithms, in order to improve tourists' travelling experiences and save them time. The experimental data showed that the enhanced heuristic search algorithm visited 122 nodes, which is 62.9% and 52.3% less than the sparrow search algorithm and the improved genetic search strategy, respectively. The number of iterations required to reach convergence for the selective tour path recommendation algorithm, genetic algorithm, discrete particle swarm algorithm, and genetic particle swarm algorithm, respectively, was 39, 90, 85, and 63, indicating that the proposed selective tour path recommendation algorithm has the fastest computational speed. The accuracy, stability, user satisfaction, and overall rating of the smart tourism system that integrates tourists' needs and scenario characteristics are all higher than those of the three types of tourism systems, such as the iBeacon Smart Tourism System, indicating that this smart tourism system is the best to use, helping to enhance tourists' experiences and promote the robust development of the tourism industry.</div></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"6 \",\"pages\":\"Article 200168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of smart tourism system integrating tourist needs and scene characteristics
The demand for travel is increasing as human living conditions rise. The paper presents a smart tourism system architecture that incorporates visitors' demands and scenario characteristics, and performs path planning using path search algorithms and selective tour path recommendation algorithms, in order to improve tourists' travelling experiences and save them time. The experimental data showed that the enhanced heuristic search algorithm visited 122 nodes, which is 62.9% and 52.3% less than the sparrow search algorithm and the improved genetic search strategy, respectively. The number of iterations required to reach convergence for the selective tour path recommendation algorithm, genetic algorithm, discrete particle swarm algorithm, and genetic particle swarm algorithm, respectively, was 39, 90, 85, and 63, indicating that the proposed selective tour path recommendation algorithm has the fastest computational speed. The accuracy, stability, user satisfaction, and overall rating of the smart tourism system that integrates tourists' needs and scenario characteristics are all higher than those of the three types of tourism systems, such as the iBeacon Smart Tourism System, indicating that this smart tourism system is the best to use, helping to enhance tourists' experiences and promote the robust development of the tourism industry.