一种 AIE 真菌液泡膜探针,用于物种区分、液泡形成可视化和定向光动力疗法

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL Materials Today Bio Pub Date : 2024-11-06 DOI:10.1016/j.mtbio.2024.101329
Bingnan Wang , Siyuan Wang , Chunyang Li , Jianqing Li , Meixi Yi , Jing-Wen Lyu , Bing Gu , Ryan T.K. Kwok , Jacky W.Y. Lam , Anjun Qin , Ben Zhong Tang
{"title":"一种 AIE 真菌液泡膜探针,用于物种区分、液泡形成可视化和定向光动力疗法","authors":"Bingnan Wang ,&nbsp;Siyuan Wang ,&nbsp;Chunyang Li ,&nbsp;Jianqing Li ,&nbsp;Meixi Yi ,&nbsp;Jing-Wen Lyu ,&nbsp;Bing Gu ,&nbsp;Ryan T.K. Kwok ,&nbsp;Jacky W.Y. Lam ,&nbsp;Anjun Qin ,&nbsp;Ben Zhong Tang","doi":"10.1016/j.mtbio.2024.101329","DOIUrl":null,"url":null,"abstract":"<div><div>Vacuoles are unique organelles of fungi. The development of probes targeting the vacuoles membrane will enable visualization of physiological processes and precise diagnosis and therapy. Herein, a zwitterionic molecule, MXF-R, comprising of an aggregation-induced emission (AIE) photosensitizing unit and an antibiotic moxifloxacin, was found capable of specifically imaging vacuole membrane and using for targeted antifungal therapy. MXF-R demonstrated a higher signal-to-noise ratio, stronger targeting capability, and better biocompatibility than the commercial probe FM4-64. By using MXF-R, real-time visualization of vacuole formation during <em>Candida albicans</em> (<em>C. albicans</em>) proliferation was achieved. More importantly, owing to its varying staining ability towards different fungus, MXF-R could be used to quickly identify <em>C. albicans</em> in mixed strains by fluorescence imaging. Moreover, MXF-R exhibits a remarkable ability to generate reactive oxygen species under white light, effectively eradicating <em>C. albicans</em> by disrupting membrane structure. This antifungal therapy of membrane damage is more effective than clinical drug fluconazole. Therefore, this work not only presents the initial discovery of a probe targeting vacuolar membrane, but also provides a way to develop novel materials to realize integrated diagnosis and therapy.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101329"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An AIE fungal vacuole membrane probe toward species differentiation, vacuole formation visualization, and targeted photodynamic therapy\",\"authors\":\"Bingnan Wang ,&nbsp;Siyuan Wang ,&nbsp;Chunyang Li ,&nbsp;Jianqing Li ,&nbsp;Meixi Yi ,&nbsp;Jing-Wen Lyu ,&nbsp;Bing Gu ,&nbsp;Ryan T.K. Kwok ,&nbsp;Jacky W.Y. Lam ,&nbsp;Anjun Qin ,&nbsp;Ben Zhong Tang\",\"doi\":\"10.1016/j.mtbio.2024.101329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vacuoles are unique organelles of fungi. The development of probes targeting the vacuoles membrane will enable visualization of physiological processes and precise diagnosis and therapy. Herein, a zwitterionic molecule, MXF-R, comprising of an aggregation-induced emission (AIE) photosensitizing unit and an antibiotic moxifloxacin, was found capable of specifically imaging vacuole membrane and using for targeted antifungal therapy. MXF-R demonstrated a higher signal-to-noise ratio, stronger targeting capability, and better biocompatibility than the commercial probe FM4-64. By using MXF-R, real-time visualization of vacuole formation during <em>Candida albicans</em> (<em>C. albicans</em>) proliferation was achieved. More importantly, owing to its varying staining ability towards different fungus, MXF-R could be used to quickly identify <em>C. albicans</em> in mixed strains by fluorescence imaging. Moreover, MXF-R exhibits a remarkable ability to generate reactive oxygen species under white light, effectively eradicating <em>C. albicans</em> by disrupting membrane structure. This antifungal therapy of membrane damage is more effective than clinical drug fluconazole. Therefore, this work not only presents the initial discovery of a probe targeting vacuolar membrane, but also provides a way to develop novel materials to realize integrated diagnosis and therapy.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101329\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003909\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003909","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

液泡是真菌的独特细胞器。开发针对液泡膜的探针可实现生理过程的可视化以及精确诊断和治疗。研究发现,由聚集诱导发射(AIE)光敏单元和抗生素莫西沙星组成的齐聚物分子 MXF-R 能够对液泡膜进行特异性成像,并用于靶向抗真菌治疗。与商用探针 FM4-64 相比,MXF-R 具有更高的信噪比、更强的靶向能力和更好的生物相容性。通过使用 MXF-R,实现了对白色念珠菌(C. albicans)增殖过程中空泡形成的实时可视化。更重要的是,由于 MXF-R 对不同真菌具有不同的染色能力,因此可用于通过荧光成像快速识别混合菌株中的白念珠菌。此外,MXF-R 还能在白光下产生活性氧,通过破坏膜结构有效消灭白僵菌。这种破坏膜的抗真菌疗法比临床药物氟康唑更有效。因此,这项工作不仅初步发现了一种针对液泡膜的探针,还为开发新型材料以实现诊断和治疗一体化提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An AIE fungal vacuole membrane probe toward species differentiation, vacuole formation visualization, and targeted photodynamic therapy
Vacuoles are unique organelles of fungi. The development of probes targeting the vacuoles membrane will enable visualization of physiological processes and precise diagnosis and therapy. Herein, a zwitterionic molecule, MXF-R, comprising of an aggregation-induced emission (AIE) photosensitizing unit and an antibiotic moxifloxacin, was found capable of specifically imaging vacuole membrane and using for targeted antifungal therapy. MXF-R demonstrated a higher signal-to-noise ratio, stronger targeting capability, and better biocompatibility than the commercial probe FM4-64. By using MXF-R, real-time visualization of vacuole formation during Candida albicans (C. albicans) proliferation was achieved. More importantly, owing to its varying staining ability towards different fungus, MXF-R could be used to quickly identify C. albicans in mixed strains by fluorescence imaging. Moreover, MXF-R exhibits a remarkable ability to generate reactive oxygen species under white light, effectively eradicating C. albicans by disrupting membrane structure. This antifungal therapy of membrane damage is more effective than clinical drug fluconazole. Therefore, this work not only presents the initial discovery of a probe targeting vacuolar membrane, but also provides a way to develop novel materials to realize integrated diagnosis and therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
期刊最新文献
A novel nanomedicine integrating ferroptosis and photothermal therapy, well-suitable for PD-L1-mediated immune checkpoint blockade Nickel–titanium alloy porous scaffolds based on a dominant cellular structure manufactured by laser powder bed fusion have satisfactory osteogenic efficacy A high-water retention, self-healing hydrogel thyroid model for surgical training Injectable microgels containing genetically engineered bacteria for colon cancer therapy through programmed Chemokine expression Multifunctional hydrogels loaded with tellurium nanozyme for spinal cord injury repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1