局部参考特征转移 (LRFT):图像增强的简单预处理步骤

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-10-01 DOI:10.1016/j.patrec.2024.10.013
Ling Zhou , Weidong Zhang , Yuchao Zheng , Jianping Wang , Wenyi Zhao
{"title":"局部参考特征转移 (LRFT):图像增强的简单预处理步骤","authors":"Ling Zhou ,&nbsp;Weidong Zhang ,&nbsp;Yuchao Zheng ,&nbsp;Jianping Wang ,&nbsp;Wenyi Zhao","doi":"10.1016/j.patrec.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>Low-light, nighttime haze, and underwater images captured in harsh environments typically exhibit color deviations and reduced visibility due to light scattering and absorption. Additionally, we observe an almost complete loss of information in at least one color channel in these degraded images. To repair the lost information in each channel, we present an image preprocessing strategy called Local Reference Feature Transfer (LRFT), which employs the local feature to compensate for the color loss automatically. Specifically, we design a dedicated reference image by fusing the detail, salience, and uniform grayscale images of the raw image that ensures a balanced chromaticity distribution. Subsequently, we employ the local reference feature transfer strategy to migrate the local mean and variance of the reference image to the raw image to get a color-corrected image. Extensive evaluation experiments demonstrate that our proposed LRFT method has good preprocessing performance for the subsequent enhancement of images of different degradation types. The code is publicly available at: <span><span>https://www.researchgate.net/publication/383528251_2024-LRFT</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 330-336"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Reference Feature Transfer (LRFT): A simple pre-processing step for image enhancement\",\"authors\":\"Ling Zhou ,&nbsp;Weidong Zhang ,&nbsp;Yuchao Zheng ,&nbsp;Jianping Wang ,&nbsp;Wenyi Zhao\",\"doi\":\"10.1016/j.patrec.2024.10.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-light, nighttime haze, and underwater images captured in harsh environments typically exhibit color deviations and reduced visibility due to light scattering and absorption. Additionally, we observe an almost complete loss of information in at least one color channel in these degraded images. To repair the lost information in each channel, we present an image preprocessing strategy called Local Reference Feature Transfer (LRFT), which employs the local feature to compensate for the color loss automatically. Specifically, we design a dedicated reference image by fusing the detail, salience, and uniform grayscale images of the raw image that ensures a balanced chromaticity distribution. Subsequently, we employ the local reference feature transfer strategy to migrate the local mean and variance of the reference image to the raw image to get a color-corrected image. Extensive evaluation experiments demonstrate that our proposed LRFT method has good preprocessing performance for the subsequent enhancement of images of different degradation types. The code is publicly available at: <span><span>https://www.researchgate.net/publication/383528251_2024-LRFT</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"186 \",\"pages\":\"Pages 330-336\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524003015\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524003015","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于光的散射和吸收,在恶劣环境下拍摄的弱光、夜间雾霾和水下图像通常会出现色彩偏差,能见度降低。此外,我们还观察到这些劣化图像中至少有一个颜色通道的信息几乎完全丢失。为了修复每个通道中丢失的信息,我们提出了一种名为本地参考特征转移(LRFT)的图像预处理策略,该策略利用本地特征自动补偿色彩损失。具体来说,我们通过融合原始图像的细节、显著性和均匀灰度图像来设计专用参考图像,以确保色度分布均衡。随后,我们采用局部参考特征转移策略,将参考图像的局部均值和方差迁移到原始图像上,从而得到色彩校正图像。广泛的评估实验证明,我们提出的 LRFT 方法具有良好的预处理性能,可用于不同退化类型图像的后续增强。代码可在以下网址公开获取:https://www.researchgate.net/publication/383528251_2024-LRFT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local Reference Feature Transfer (LRFT): A simple pre-processing step for image enhancement
Low-light, nighttime haze, and underwater images captured in harsh environments typically exhibit color deviations and reduced visibility due to light scattering and absorption. Additionally, we observe an almost complete loss of information in at least one color channel in these degraded images. To repair the lost information in each channel, we present an image preprocessing strategy called Local Reference Feature Transfer (LRFT), which employs the local feature to compensate for the color loss automatically. Specifically, we design a dedicated reference image by fusing the detail, salience, and uniform grayscale images of the raw image that ensures a balanced chromaticity distribution. Subsequently, we employ the local reference feature transfer strategy to migrate the local mean and variance of the reference image to the raw image to get a color-corrected image. Extensive evaluation experiments demonstrate that our proposed LRFT method has good preprocessing performance for the subsequent enhancement of images of different degradation types. The code is publicly available at: https://www.researchgate.net/publication/383528251_2024-LRFT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Personalized Federated Learning on long-tailed data via knowledge distillation and generated features Adaptive feature alignment for adversarial training Discrete diffusion models with Refined Language-Image Pre-trained representations for remote sensing image captioning A unified framework to stereotyped behavior detection for screening Autism Spectrum Disorder Explainable hypergraphs for gait based Parkinson classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1