{"title":"局部参考特征转移 (LRFT):图像增强的简单预处理步骤","authors":"Ling Zhou , Weidong Zhang , Yuchao Zheng , Jianping Wang , Wenyi Zhao","doi":"10.1016/j.patrec.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>Low-light, nighttime haze, and underwater images captured in harsh environments typically exhibit color deviations and reduced visibility due to light scattering and absorption. Additionally, we observe an almost complete loss of information in at least one color channel in these degraded images. To repair the lost information in each channel, we present an image preprocessing strategy called Local Reference Feature Transfer (LRFT), which employs the local feature to compensate for the color loss automatically. Specifically, we design a dedicated reference image by fusing the detail, salience, and uniform grayscale images of the raw image that ensures a balanced chromaticity distribution. Subsequently, we employ the local reference feature transfer strategy to migrate the local mean and variance of the reference image to the raw image to get a color-corrected image. Extensive evaluation experiments demonstrate that our proposed LRFT method has good preprocessing performance for the subsequent enhancement of images of different degradation types. The code is publicly available at: <span><span>https://www.researchgate.net/publication/383528251_2024-LRFT</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 330-336"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Reference Feature Transfer (LRFT): A simple pre-processing step for image enhancement\",\"authors\":\"Ling Zhou , Weidong Zhang , Yuchao Zheng , Jianping Wang , Wenyi Zhao\",\"doi\":\"10.1016/j.patrec.2024.10.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-light, nighttime haze, and underwater images captured in harsh environments typically exhibit color deviations and reduced visibility due to light scattering and absorption. Additionally, we observe an almost complete loss of information in at least one color channel in these degraded images. To repair the lost information in each channel, we present an image preprocessing strategy called Local Reference Feature Transfer (LRFT), which employs the local feature to compensate for the color loss automatically. Specifically, we design a dedicated reference image by fusing the detail, salience, and uniform grayscale images of the raw image that ensures a balanced chromaticity distribution. Subsequently, we employ the local reference feature transfer strategy to migrate the local mean and variance of the reference image to the raw image to get a color-corrected image. Extensive evaluation experiments demonstrate that our proposed LRFT method has good preprocessing performance for the subsequent enhancement of images of different degradation types. The code is publicly available at: <span><span>https://www.researchgate.net/publication/383528251_2024-LRFT</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"186 \",\"pages\":\"Pages 330-336\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524003015\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524003015","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Local Reference Feature Transfer (LRFT): A simple pre-processing step for image enhancement
Low-light, nighttime haze, and underwater images captured in harsh environments typically exhibit color deviations and reduced visibility due to light scattering and absorption. Additionally, we observe an almost complete loss of information in at least one color channel in these degraded images. To repair the lost information in each channel, we present an image preprocessing strategy called Local Reference Feature Transfer (LRFT), which employs the local feature to compensate for the color loss automatically. Specifically, we design a dedicated reference image by fusing the detail, salience, and uniform grayscale images of the raw image that ensures a balanced chromaticity distribution. Subsequently, we employ the local reference feature transfer strategy to migrate the local mean and variance of the reference image to the raw image to get a color-corrected image. Extensive evaluation experiments demonstrate that our proposed LRFT method has good preprocessing performance for the subsequent enhancement of images of different degradation types. The code is publicly available at: https://www.researchgate.net/publication/383528251_2024-LRFT.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.