用于高效太阳能收集的聚光近场热光子学:模型开发、系统分析和性能优化

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-11-15 DOI:10.1016/j.solmat.2024.113273
Ehsanur Rahman , Fei Gao , Xin Zhang
{"title":"用于高效太阳能收集的聚光近场热光子学:模型开发、系统分析和性能优化","authors":"Ehsanur Rahman ,&nbsp;Fei Gao ,&nbsp;Xin Zhang","doi":"10.1016/j.solmat.2024.113273","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, research on near-field thermophotonic systems has predominantly focused on waste heat recovery and electroluminescence cooling, while studies on near-field thermophotonic converters for solar energy harvesting have not been reported. We propose a near-field solar thermophotonic converter (NF-STC) that harnesses the full solar spectrum to generate electricity. Considering fluctuational electrodynamics and nonradiative recombination losses, we developed a self-consistent model to theoretically evaluate the performance of the NF-STC system from far-field to near-field regimes under two scenarios: varying LED temperature and fixed LED temperature. In the case of variable LED temperature, we identify that increasing the solar concentration, decreasing the thickness of the semiconductor material to mitigate the effect of non-radiative recombination, narrowing the vacuum gap spacing, and implementing gold back reflector for photon recycling can significantly bolster the performance of the system. Specifically, when the gap spacing is 10 nm, and the solar concentration factor is 400, we show that the total electrical power density and overall conversion efficiency can reach 8892 mW cm<sup>−2</sup> and 22.2%, respectively. Conversely, in the fixed LED temperature scenario, the performance characteristics diverge from those observed in the variable temperature case. The system exhibits superior performance at higher LED temperatures and smaller gap spacing. This work deepens the understanding of thermophotonic converters’ application in solar energy harvesting by considering the interplay of various physical phenomena. It presents a promising pathway for efficient solar thermal power conversion.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"280 ","pages":"Article 113273"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentrated near-field thermophotonics for efficient solar energy harvesting: Model development, system analysis, and performance optimization\",\"authors\":\"Ehsanur Rahman ,&nbsp;Fei Gao ,&nbsp;Xin Zhang\",\"doi\":\"10.1016/j.solmat.2024.113273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, research on near-field thermophotonic systems has predominantly focused on waste heat recovery and electroluminescence cooling, while studies on near-field thermophotonic converters for solar energy harvesting have not been reported. We propose a near-field solar thermophotonic converter (NF-STC) that harnesses the full solar spectrum to generate electricity. Considering fluctuational electrodynamics and nonradiative recombination losses, we developed a self-consistent model to theoretically evaluate the performance of the NF-STC system from far-field to near-field regimes under two scenarios: varying LED temperature and fixed LED temperature. In the case of variable LED temperature, we identify that increasing the solar concentration, decreasing the thickness of the semiconductor material to mitigate the effect of non-radiative recombination, narrowing the vacuum gap spacing, and implementing gold back reflector for photon recycling can significantly bolster the performance of the system. Specifically, when the gap spacing is 10 nm, and the solar concentration factor is 400, we show that the total electrical power density and overall conversion efficiency can reach 8892 mW cm<sup>−2</sup> and 22.2%, respectively. Conversely, in the fixed LED temperature scenario, the performance characteristics diverge from those observed in the variable temperature case. The system exhibits superior performance at higher LED temperatures and smaller gap spacing. This work deepens the understanding of thermophotonic converters’ application in solar energy harvesting by considering the interplay of various physical phenomena. It presents a promising pathway for efficient solar thermal power conversion.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"280 \",\"pages\":\"Article 113273\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005853\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005853","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,有关近场热光子系统的研究主要集中在余热回收和电致发光冷却方面,而有关用于太阳能收集的近场热光子转换器的研究尚未见报道。我们提出了一种近场太阳能热光子转换器(NF-STC),它能利用整个太阳光谱发电。考虑到波动电动力学和非辐射重组损耗,我们建立了一个自洽模型,从理论上评估了 NF-STC 系统在两种情况下从远场到近场的性能:变化的 LED 温度和固定的 LED 温度。在 LED 温度可变的情况下,我们发现提高太阳光浓度、减小半导体材料厚度以减轻非辐射重组的影响、缩小真空间隙间距以及采用金背向反射器进行光子回收,都能显著提高系统的性能。具体来说,当间隙间距为 10 nm、太阳光集中系数为 400 时,我们发现总功率密度和整体转换效率分别可达到 8892 mW cm-2 和 22.2%。相反,在 LED 温度固定的情况下,其性能特征与在温度可变的情况下观察到的性能特征有所不同。该系统在较高的 LED 温度和较小的间隙间距下表现出卓越的性能。这项研究通过考虑各种物理现象的相互作用,加深了人们对热光子转换器在太阳能收集中的应用的理解。它为高效太阳能热能转换提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Concentrated near-field thermophotonics for efficient solar energy harvesting: Model development, system analysis, and performance optimization
In recent years, research on near-field thermophotonic systems has predominantly focused on waste heat recovery and electroluminescence cooling, while studies on near-field thermophotonic converters for solar energy harvesting have not been reported. We propose a near-field solar thermophotonic converter (NF-STC) that harnesses the full solar spectrum to generate electricity. Considering fluctuational electrodynamics and nonradiative recombination losses, we developed a self-consistent model to theoretically evaluate the performance of the NF-STC system from far-field to near-field regimes under two scenarios: varying LED temperature and fixed LED temperature. In the case of variable LED temperature, we identify that increasing the solar concentration, decreasing the thickness of the semiconductor material to mitigate the effect of non-radiative recombination, narrowing the vacuum gap spacing, and implementing gold back reflector for photon recycling can significantly bolster the performance of the system. Specifically, when the gap spacing is 10 nm, and the solar concentration factor is 400, we show that the total electrical power density and overall conversion efficiency can reach 8892 mW cm−2 and 22.2%, respectively. Conversely, in the fixed LED temperature scenario, the performance characteristics diverge from those observed in the variable temperature case. The system exhibits superior performance at higher LED temperatures and smaller gap spacing. This work deepens the understanding of thermophotonic converters’ application in solar energy harvesting by considering the interplay of various physical phenomena. It presents a promising pathway for efficient solar thermal power conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Oxide-nitride nanolayer stacks for enhanced passivation of p-type surfaces in silicon solar cells Accurately quantifying the recombination pathways unique in back contact solar cells Analyzing the effectiveness of various coatings to mitigate photovoltaic modules soiling in desert climate Solar energy harvester based on polarization insensitive and wide angle stable UWB absorber for UV, visible and IR frequency range Experimental evaluation of photovoltaic thermal (PVT) system using a modular heat collector with flat back shape fins, pipe, nanofluids and phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1