Komi M. Agboka , José T.C. Ouaba , Felix Meutchieye , Timoléon Tchuinkam , Tobias Landmann , Elfatih M. Abdel-Rahman , Saliou Niassy , Henri E.Z. Tonnang
{"title":"利用知识表示逻辑估算撒哈拉以南非洲地区重要食用昆虫 Imbrasia epimethea(鳞翅目:土星科)的可获得性","authors":"Komi M. Agboka , José T.C. Ouaba , Felix Meutchieye , Timoléon Tchuinkam , Tobias Landmann , Elfatih M. Abdel-Rahman , Saliou Niassy , Henri E.Z. Tonnang","doi":"10.1016/j.ecoinf.2024.102890","DOIUrl":null,"url":null,"abstract":"<div><div>Based on monthly abundance patterns, we model the density of <em>Imbrasia epimethea</em> (Drury, 1773), an important edible insect in Africa. Categorical data was collected from various regions in Cameroon, and data analysis techniques were used to infer relationships between environmental variables and the level of insect abundance. Through fuzzy logic modeling, we identified the key environmental factors and rules that influence the density of the insect. To visualize the distribution of <em>I. epimethea</em> across African landscapes, interpolation techniques were used on the study area matrix of geographical coordinates based on the corresponding monthly predictor variables for the most recent available year (2022). The results suggested a clear dynamic across Africa through the different months of the year with potentially overlapping generations with relatively high accuracy (>90%). A clear relationship between regional climatic conditions and the density of <em>I. epimethea</em> could be established across Africa. The models provide insights into the complex dynamics of insect populations and sheds light on the stability and transferability of our results across different African regions (during stability analysis). This research offers a foundation for further investigations on sustainable food production and the promotion of edible insects as a viable protein source.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"84 ","pages":"Article 102890"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using a knowledge representation logic to estimate the availability of Imbrasia epimethea (Lepidoptera: Saturniidae), an important edible insect in Subsaharan Africa\",\"authors\":\"Komi M. Agboka , José T.C. Ouaba , Felix Meutchieye , Timoléon Tchuinkam , Tobias Landmann , Elfatih M. Abdel-Rahman , Saliou Niassy , Henri E.Z. Tonnang\",\"doi\":\"10.1016/j.ecoinf.2024.102890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on monthly abundance patterns, we model the density of <em>Imbrasia epimethea</em> (Drury, 1773), an important edible insect in Africa. Categorical data was collected from various regions in Cameroon, and data analysis techniques were used to infer relationships between environmental variables and the level of insect abundance. Through fuzzy logic modeling, we identified the key environmental factors and rules that influence the density of the insect. To visualize the distribution of <em>I. epimethea</em> across African landscapes, interpolation techniques were used on the study area matrix of geographical coordinates based on the corresponding monthly predictor variables for the most recent available year (2022). The results suggested a clear dynamic across Africa through the different months of the year with potentially overlapping generations with relatively high accuracy (>90%). A clear relationship between regional climatic conditions and the density of <em>I. epimethea</em> could be established across Africa. The models provide insights into the complex dynamics of insect populations and sheds light on the stability and transferability of our results across different African regions (during stability analysis). This research offers a foundation for further investigations on sustainable food production and the promotion of edible insects as a viable protein source.</div></div>\",\"PeriodicalId\":51024,\"journal\":{\"name\":\"Ecological Informatics\",\"volume\":\"84 \",\"pages\":\"Article 102890\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Informatics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574954124004321\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954124004321","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
根据月丰度模式,我们建立了非洲重要食用昆虫 Imbrasia epimethea(Drury,1773 年)的密度模型。我们从喀麦隆不同地区收集了分类数据,并利用数据分析技术推断环境变量与昆虫丰度水平之间的关系。通过模糊逻辑建模,我们确定了影响昆虫密度的关键环境因素和规则。为了直观地显示表皮夜蛾在非洲各地的分布情况,我们根据最近一年(2022 年)相应的月度预测变量,对研究区域的地理坐标矩阵使用了插值技术。结果表明,非洲各地在一年中的不同月份有明显的动态变化,世代可能重叠,准确率相对较高(90%)。在整个非洲,区域气候条件与 I. epimethea 的密度之间存在明确的关系。这些模型有助于深入了解昆虫种群的复杂动态,并揭示了我们的研究结果在非洲不同地区的稳定性和可转移性(在稳定性分析期间)。这项研究为进一步调查可持续粮食生产和推广食用昆虫作为可行的蛋白质来源奠定了基础。
Using a knowledge representation logic to estimate the availability of Imbrasia epimethea (Lepidoptera: Saturniidae), an important edible insect in Subsaharan Africa
Based on monthly abundance patterns, we model the density of Imbrasia epimethea (Drury, 1773), an important edible insect in Africa. Categorical data was collected from various regions in Cameroon, and data analysis techniques were used to infer relationships between environmental variables and the level of insect abundance. Through fuzzy logic modeling, we identified the key environmental factors and rules that influence the density of the insect. To visualize the distribution of I. epimethea across African landscapes, interpolation techniques were used on the study area matrix of geographical coordinates based on the corresponding monthly predictor variables for the most recent available year (2022). The results suggested a clear dynamic across Africa through the different months of the year with potentially overlapping generations with relatively high accuracy (>90%). A clear relationship between regional climatic conditions and the density of I. epimethea could be established across Africa. The models provide insights into the complex dynamics of insect populations and sheds light on the stability and transferability of our results across different African regions (during stability analysis). This research offers a foundation for further investigations on sustainable food production and the promotion of edible insects as a viable protein source.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.