采用 ALD 和 USP 方法合成的带有 TiO2 电子传输层的 Sb2S3 太阳能电池

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-11-16 DOI:10.1016/j.solmat.2024.113279
T. Dedova , R. Krautmann , M. Rusu , A. Katerski , M. Krunks , T. Unold , N. Spalatu , A. Mere , J. Sydorenko , M. Sibiński , I. Oja Acik
{"title":"采用 ALD 和 USP 方法合成的带有 TiO2 电子传输层的 Sb2S3 太阳能电池","authors":"T. Dedova ,&nbsp;R. Krautmann ,&nbsp;M. Rusu ,&nbsp;A. Katerski ,&nbsp;M. Krunks ,&nbsp;T. Unold ,&nbsp;N. Spalatu ,&nbsp;A. Mere ,&nbsp;J. Sydorenko ,&nbsp;M. Sibiński ,&nbsp;I. Oja Acik","doi":"10.1016/j.solmat.2024.113279","DOIUrl":null,"url":null,"abstract":"<div><div>Electronic characteristics were investigated for solar cells (SCs) based on FTO/TiO<sub>2</sub>/Sb<sub>2</sub>S<sub>3</sub>/P3HT/Au structure, employing TiO<sub>2</sub> electron transport layers (ETLs) fabricated by two different methods: ultrasonic spray pyrolysis (USP) and atomic layer deposition (ALD). Regardless of the deposition method, both ALD and USP-TiO<sub>2</sub> exhibit the anatase crystal structure. The calculated crystallite sizes, derived from the (101) reflection of TiO<sub>2</sub> layers using the Scherrer equation, show minimal variance between the two methods, with values 25 nm for USP and 30 nm for ALD TiO<sub>2</sub>, respectively. Optical band gaps (E<sub>g</sub>) were found to be 3.31 eV and 3.35 eV for USP and ALD methods, respectively. Exploring the thickness series of ALD-TiO<sub>2</sub>, ranging from 100 to 1000 cycles (approximately 5–75 nm), solar cell performance was evaluated, with the highest power conversion efficiency (PCE) of 3.3 % achieved using ALD-TiO<sub>2</sub> of 400 cycles (approximately 30 nm thick). Notably, SCs featuring USP TiO<sub>2</sub> ETL layers, with a thickness of approximately 35–40 nm, outperform their ALD-TiO<sub>2</sub> counterparts, improving PCE by 15 %, recording 4.0 % versus 3.3 %, respectively. This superiority in PCE is attributed to the more favorable conduction band minimum (CBM) position of USP-TiO<sub>2</sub> relative to the Fermi level, as revealed in the band diagram. Specifically, a lower CBM spike at the USP-TiO<sub>2</sub>/-Sb<sub>2</sub>S<sub>3</sub> interface indicates reduced recombination rates compared to those at the ALD-TiO<sub>2</sub>/-Sb<sub>2</sub>S<sub>3</sub> interface. This study offers valuable insights into enhancing SC performance by optimizing deposition methods and synthesis parameters of ETL layers.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"280 ","pages":"Article 113279"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sb2S3 solar cells with TiO2 electron transporting layers synthesized by ALD and USP methods\",\"authors\":\"T. Dedova ,&nbsp;R. Krautmann ,&nbsp;M. Rusu ,&nbsp;A. Katerski ,&nbsp;M. Krunks ,&nbsp;T. Unold ,&nbsp;N. Spalatu ,&nbsp;A. Mere ,&nbsp;J. Sydorenko ,&nbsp;M. Sibiński ,&nbsp;I. Oja Acik\",\"doi\":\"10.1016/j.solmat.2024.113279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electronic characteristics were investigated for solar cells (SCs) based on FTO/TiO<sub>2</sub>/Sb<sub>2</sub>S<sub>3</sub>/P3HT/Au structure, employing TiO<sub>2</sub> electron transport layers (ETLs) fabricated by two different methods: ultrasonic spray pyrolysis (USP) and atomic layer deposition (ALD). Regardless of the deposition method, both ALD and USP-TiO<sub>2</sub> exhibit the anatase crystal structure. The calculated crystallite sizes, derived from the (101) reflection of TiO<sub>2</sub> layers using the Scherrer equation, show minimal variance between the two methods, with values 25 nm for USP and 30 nm for ALD TiO<sub>2</sub>, respectively. Optical band gaps (E<sub>g</sub>) were found to be 3.31 eV and 3.35 eV for USP and ALD methods, respectively. Exploring the thickness series of ALD-TiO<sub>2</sub>, ranging from 100 to 1000 cycles (approximately 5–75 nm), solar cell performance was evaluated, with the highest power conversion efficiency (PCE) of 3.3 % achieved using ALD-TiO<sub>2</sub> of 400 cycles (approximately 30 nm thick). Notably, SCs featuring USP TiO<sub>2</sub> ETL layers, with a thickness of approximately 35–40 nm, outperform their ALD-TiO<sub>2</sub> counterparts, improving PCE by 15 %, recording 4.0 % versus 3.3 %, respectively. This superiority in PCE is attributed to the more favorable conduction band minimum (CBM) position of USP-TiO<sub>2</sub> relative to the Fermi level, as revealed in the band diagram. Specifically, a lower CBM spike at the USP-TiO<sub>2</sub>/-Sb<sub>2</sub>S<sub>3</sub> interface indicates reduced recombination rates compared to those at the ALD-TiO<sub>2</sub>/-Sb<sub>2</sub>S<sub>3</sub> interface. This study offers valuable insights into enhancing SC performance by optimizing deposition methods and synthesis parameters of ETL layers.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"280 \",\"pages\":\"Article 113279\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005919\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005919","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

研究了基于 FTO/TiO2/Sb2S3/P3HT/Au 结构的太阳能电池 (SC) 的电子特性,该电池采用两种不同的方法制造 TiO2 电子传输层 (ETL):超声喷射热解 (USP) 和原子层沉积 (ALD)。无论采用哪种沉积方法,ALD 和 USP-TiO2 都表现出锐钛型晶体结构。利用舍勒方程从二氧化钛层的 (101) 反射得出的计算结晶尺寸显示,两种方法之间的差异极小,USP 和 ALD 二氧化钛的结晶尺寸分别为 25 nm 和 30 nm。USP 和 ALD 方法的光带隙 (Eg) 分别为 3.31 eV 和 3.35 eV。通过探索 ALD-TiO2 的厚度系列(从 100 到 1000 个循环(约 5-75 nm)),对太阳能电池的性能进行了评估,其中使用 400 个循环(约 30 nm 厚)的 ALD-TiO2 实现了 3.3 % 的最高功率转换效率 (PCE)。值得注意的是,采用 USP TiO2 ETL 层(厚度约为 35-40 纳米)的太阳能电池性能优于 ALD-TiO2 同类产品,PCE 提高了 15%,分别达到 4.0% 和 3.3%。这一 PCE 优越性归功于 USP-TiO2 相对于费米级更有利的导带最小值 (CBM) 位置,如带状图所示。具体来说,USP-TiO2/-Sb2S3 界面上较低的 CBM 峰值表明,与 ALD-TiO2/-Sb2S3 界面相比,重组率降低了。这项研究为通过优化 ETL 层的沉积方法和合成参数来提高 SC 性能提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sb2S3 solar cells with TiO2 electron transporting layers synthesized by ALD and USP methods
Electronic characteristics were investigated for solar cells (SCs) based on FTO/TiO2/Sb2S3/P3HT/Au structure, employing TiO2 electron transport layers (ETLs) fabricated by two different methods: ultrasonic spray pyrolysis (USP) and atomic layer deposition (ALD). Regardless of the deposition method, both ALD and USP-TiO2 exhibit the anatase crystal structure. The calculated crystallite sizes, derived from the (101) reflection of TiO2 layers using the Scherrer equation, show minimal variance between the two methods, with values 25 nm for USP and 30 nm for ALD TiO2, respectively. Optical band gaps (Eg) were found to be 3.31 eV and 3.35 eV for USP and ALD methods, respectively. Exploring the thickness series of ALD-TiO2, ranging from 100 to 1000 cycles (approximately 5–75 nm), solar cell performance was evaluated, with the highest power conversion efficiency (PCE) of 3.3 % achieved using ALD-TiO2 of 400 cycles (approximately 30 nm thick). Notably, SCs featuring USP TiO2 ETL layers, with a thickness of approximately 35–40 nm, outperform their ALD-TiO2 counterparts, improving PCE by 15 %, recording 4.0 % versus 3.3 %, respectively. This superiority in PCE is attributed to the more favorable conduction band minimum (CBM) position of USP-TiO2 relative to the Fermi level, as revealed in the band diagram. Specifically, a lower CBM spike at the USP-TiO2/-Sb2S3 interface indicates reduced recombination rates compared to those at the ALD-TiO2/-Sb2S3 interface. This study offers valuable insights into enhancing SC performance by optimizing deposition methods and synthesis parameters of ETL layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Oxide-nitride nanolayer stacks for enhanced passivation of p-type surfaces in silicon solar cells Accurately quantifying the recombination pathways unique in back contact solar cells Analyzing the effectiveness of various coatings to mitigate photovoltaic modules soiling in desert climate Solar energy harvester based on polarization insensitive and wide angle stable UWB absorber for UV, visible and IR frequency range Experimental evaluation of photovoltaic thermal (PVT) system using a modular heat collector with flat back shape fins, pipe, nanofluids and phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1