Zhixin Duan , Liang Cheng , Qingzhou Mao , Yueting Song , Xiao Zhou , Manchun Li , Jianya Gong
{"title":"MIWC:用于浅水卫星水深测量的多时相图像加权合成法","authors":"Zhixin Duan , Liang Cheng , Qingzhou Mao , Yueting Song , Xiao Zhou , Manchun Li , Jianya Gong","doi":"10.1016/j.isprsjprs.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>Satellite-derived bathymetry (SDB) is a vital technique for the rapid and cost-effective measurement of shallow underwater terrain. However, it faces challenges of image noise, including clouds, bubble clouds, and sun glint. Consequently, the acquisition of no missing and accurate bathymetric maps is frequently challenging, particularly in cloudy, rainy, and large-scale regions. In this study, we propose a multi-temporal image weighted composition (MIWC) method. This method performs iterative segmentation and inverse distance weighted composition of multi-temporal images based only on the near-infrared (NIR) band information of multispectral images to obtain high-quality composite images. The method was applied to scenarios using Sentinel-2 imagery for bathymetry of four representative areas located in the South China Sea and the Atlantic Ocean. The results show that the root mean square error (RMSE) of bathymetry from the composite images using the log-transformed linear model (LLM) and the log-transformed ratio model (LRM) in the water depth range of 0–20 m are 0.67–1.22 m and 0.71–1.23 m, respectively. The RMSE of the bathymetry decreases with the number of images involved in the composition and tends to be relatively stable when the number of images reaches approximately 16. In addition, the composition images generated by the MIWC method generally exhibit not only superior visual quality, but also significant advantages in terms of bathymetric accuracy and robustness when compared to the best single images as well as the composition images generated by the median composition method and the maximum outlier removal method. The recommended value of the power parameter for inverse distance weighting in the MIWC method was experimentally determined to be 4, which typically does not require complex adjustments, making the method easy to apply or integrate. The MIWC method offers a reliable approach to improve the quality of remote sensing images, ensuring the completeness and accuracy of shallow water bathymetric maps.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 430-445"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIWC: A multi-temporal image weighted composition method for satellite-derived bathymetry in shallow waters\",\"authors\":\"Zhixin Duan , Liang Cheng , Qingzhou Mao , Yueting Song , Xiao Zhou , Manchun Li , Jianya Gong\",\"doi\":\"10.1016/j.isprsjprs.2024.10.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Satellite-derived bathymetry (SDB) is a vital technique for the rapid and cost-effective measurement of shallow underwater terrain. However, it faces challenges of image noise, including clouds, bubble clouds, and sun glint. Consequently, the acquisition of no missing and accurate bathymetric maps is frequently challenging, particularly in cloudy, rainy, and large-scale regions. In this study, we propose a multi-temporal image weighted composition (MIWC) method. This method performs iterative segmentation and inverse distance weighted composition of multi-temporal images based only on the near-infrared (NIR) band information of multispectral images to obtain high-quality composite images. The method was applied to scenarios using Sentinel-2 imagery for bathymetry of four representative areas located in the South China Sea and the Atlantic Ocean. The results show that the root mean square error (RMSE) of bathymetry from the composite images using the log-transformed linear model (LLM) and the log-transformed ratio model (LRM) in the water depth range of 0–20 m are 0.67–1.22 m and 0.71–1.23 m, respectively. The RMSE of the bathymetry decreases with the number of images involved in the composition and tends to be relatively stable when the number of images reaches approximately 16. In addition, the composition images generated by the MIWC method generally exhibit not only superior visual quality, but also significant advantages in terms of bathymetric accuracy and robustness when compared to the best single images as well as the composition images generated by the median composition method and the maximum outlier removal method. The recommended value of the power parameter for inverse distance weighting in the MIWC method was experimentally determined to be 4, which typically does not require complex adjustments, making the method easy to apply or integrate. The MIWC method offers a reliable approach to improve the quality of remote sensing images, ensuring the completeness and accuracy of shallow water bathymetric maps.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 430-445\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003861\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003861","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
MIWC: A multi-temporal image weighted composition method for satellite-derived bathymetry in shallow waters
Satellite-derived bathymetry (SDB) is a vital technique for the rapid and cost-effective measurement of shallow underwater terrain. However, it faces challenges of image noise, including clouds, bubble clouds, and sun glint. Consequently, the acquisition of no missing and accurate bathymetric maps is frequently challenging, particularly in cloudy, rainy, and large-scale regions. In this study, we propose a multi-temporal image weighted composition (MIWC) method. This method performs iterative segmentation and inverse distance weighted composition of multi-temporal images based only on the near-infrared (NIR) band information of multispectral images to obtain high-quality composite images. The method was applied to scenarios using Sentinel-2 imagery for bathymetry of four representative areas located in the South China Sea and the Atlantic Ocean. The results show that the root mean square error (RMSE) of bathymetry from the composite images using the log-transformed linear model (LLM) and the log-transformed ratio model (LRM) in the water depth range of 0–20 m are 0.67–1.22 m and 0.71–1.23 m, respectively. The RMSE of the bathymetry decreases with the number of images involved in the composition and tends to be relatively stable when the number of images reaches approximately 16. In addition, the composition images generated by the MIWC method generally exhibit not only superior visual quality, but also significant advantages in terms of bathymetric accuracy and robustness when compared to the best single images as well as the composition images generated by the median composition method and the maximum outlier removal method. The recommended value of the power parameter for inverse distance weighting in the MIWC method was experimentally determined to be 4, which typically does not require complex adjustments, making the method easy to apply or integrate. The MIWC method offers a reliable approach to improve the quality of remote sensing images, ensuring the completeness and accuracy of shallow water bathymetric maps.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.