Yi Wang , Yizhi Zhang , Quanhua Dong , Hao Guo , Yingchun Tao , Fan Zhang
{"title":"用于楼龄预测的多视图图神经网络","authors":"Yi Wang , Yizhi Zhang , Quanhua Dong , Hao Guo , Yingchun Tao , Fan Zhang","doi":"10.1016/j.isprsjprs.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>Building age is crucial for inferring building energy consumption and understanding the interactions between human behavior and urban infrastructure. Limited by the challenges of surveys, some machine learning methods have been utilized to predict and fill in missing building age data using building footprint. However, the existing methods lack explicit modeling of spatial effects and semantic relationships between buildings. To alleviate these challenges, we propose a novel multi-view graph neural network called Building Age Prediction Network (BAPN). The features of spatial autocorrelation, spatial heterogeneity and semantic similarity were extracted and integrated using multiple graph convolutional networks. Inspired by the spatial regime model, a heterogeneity-aware graph convolutional network (HGCN) based on spatial grouping is designed to capture the spatial heterogeneity. Systematic experiments on three large-scale building footprint datasets demonstrate that BAPN outperforms existing machine learning and graph learning models, achieving high accuracy ranging from 61% to 80%. Moreover, missing building age data within the Fifth Ring Road of Beijing was filled, validating the feasibility of BAPN. This research offers new insights for filling the intra-city building age gaps and understanding multiple spatial effects essential for sustainable urban planning.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 294-311"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-view graph neural network for building age prediction\",\"authors\":\"Yi Wang , Yizhi Zhang , Quanhua Dong , Hao Guo , Yingchun Tao , Fan Zhang\",\"doi\":\"10.1016/j.isprsjprs.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Building age is crucial for inferring building energy consumption and understanding the interactions between human behavior and urban infrastructure. Limited by the challenges of surveys, some machine learning methods have been utilized to predict and fill in missing building age data using building footprint. However, the existing methods lack explicit modeling of spatial effects and semantic relationships between buildings. To alleviate these challenges, we propose a novel multi-view graph neural network called Building Age Prediction Network (BAPN). The features of spatial autocorrelation, spatial heterogeneity and semantic similarity were extracted and integrated using multiple graph convolutional networks. Inspired by the spatial regime model, a heterogeneity-aware graph convolutional network (HGCN) based on spatial grouping is designed to capture the spatial heterogeneity. Systematic experiments on three large-scale building footprint datasets demonstrate that BAPN outperforms existing machine learning and graph learning models, achieving high accuracy ranging from 61% to 80%. Moreover, missing building age data within the Fifth Ring Road of Beijing was filled, validating the feasibility of BAPN. This research offers new insights for filling the intra-city building age gaps and understanding multiple spatial effects essential for sustainable urban planning.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 294-311\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003885\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003885","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
A multi-view graph neural network for building age prediction
Building age is crucial for inferring building energy consumption and understanding the interactions between human behavior and urban infrastructure. Limited by the challenges of surveys, some machine learning methods have been utilized to predict and fill in missing building age data using building footprint. However, the existing methods lack explicit modeling of spatial effects and semantic relationships between buildings. To alleviate these challenges, we propose a novel multi-view graph neural network called Building Age Prediction Network (BAPN). The features of spatial autocorrelation, spatial heterogeneity and semantic similarity were extracted and integrated using multiple graph convolutional networks. Inspired by the spatial regime model, a heterogeneity-aware graph convolutional network (HGCN) based on spatial grouping is designed to capture the spatial heterogeneity. Systematic experiments on three large-scale building footprint datasets demonstrate that BAPN outperforms existing machine learning and graph learning models, achieving high accuracy ranging from 61% to 80%. Moreover, missing building age data within the Fifth Ring Road of Beijing was filled, validating the feasibility of BAPN. This research offers new insights for filling the intra-city building age gaps and understanding multiple spatial effects essential for sustainable urban planning.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.