Przemysław Dąbek, Jacek Wodecki, Paulina Kujawa, Adam Wróblewski, Arkadiusz Macek, Radosław Zimroz
{"title":"采矿挖掘均匀网格生成的三维点云正则化方法","authors":"Przemysław Dąbek, Jacek Wodecki, Paulina Kujawa, Adam Wróblewski, Arkadiusz Macek, Radosław Zimroz","doi":"10.1016/j.isprsjprs.2024.10.024","DOIUrl":null,"url":null,"abstract":"<div><div>Mine excavation systems are usually dozens of kilometers long with varying geometry on a small scale (roughness and shape of the walls) and on a large scale (varying widths of the tunnels, turns, and crossings). In this article, the authors address the problem of analyzing laser scanning data from large mining structures that can be used for various purposes, with focus on ventilation simulations. Together with the quality of the measurement data (diverse point-cloud density, missing samples, holes induced by obstructions in the field of view, measurement noise), this creates problems that require multi-stage processing of the obtained data. The authors propose a robust methodology to process a single segmented section of the mining system. The presented approach focuses on obtaining a point cloud ready for application in the computational fluid dynamics (CFD) analysis of airflow with minimal need for additional manual corrections on the generated mesh model. This requires the point cloud to have evenly distributed points and reduced noise (together with removal of objects inside) while keeping the unique geometrical properties and shape of the scanned tunnels. Proposed methodology uses trajectory of the excavation either obtained during the measurements or by skeletonization process explained in the article. Cross-sections obtained on planes perpendicular to the trajectory are processed towards the equalization of point distribution, removing measurement noise, holes in the point cloud and objects inside the excavation. The effects of the proposed algorithm are validated by comparing the processed cloud with the original cloud and testing within the CFD environment. The algorithm proved high effectiveness in improving skewness rate of the obtained mesh and geometry mapping accuracy (standard deviation below 5 centimeters in cloud-to-mesh comparison).</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 324-343"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D point cloud regularization method for uniform mesh generation of mining excavations\",\"authors\":\"Przemysław Dąbek, Jacek Wodecki, Paulina Kujawa, Adam Wróblewski, Arkadiusz Macek, Radosław Zimroz\",\"doi\":\"10.1016/j.isprsjprs.2024.10.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mine excavation systems are usually dozens of kilometers long with varying geometry on a small scale (roughness and shape of the walls) and on a large scale (varying widths of the tunnels, turns, and crossings). In this article, the authors address the problem of analyzing laser scanning data from large mining structures that can be used for various purposes, with focus on ventilation simulations. Together with the quality of the measurement data (diverse point-cloud density, missing samples, holes induced by obstructions in the field of view, measurement noise), this creates problems that require multi-stage processing of the obtained data. The authors propose a robust methodology to process a single segmented section of the mining system. The presented approach focuses on obtaining a point cloud ready for application in the computational fluid dynamics (CFD) analysis of airflow with minimal need for additional manual corrections on the generated mesh model. This requires the point cloud to have evenly distributed points and reduced noise (together with removal of objects inside) while keeping the unique geometrical properties and shape of the scanned tunnels. Proposed methodology uses trajectory of the excavation either obtained during the measurements or by skeletonization process explained in the article. Cross-sections obtained on planes perpendicular to the trajectory are processed towards the equalization of point distribution, removing measurement noise, holes in the point cloud and objects inside the excavation. The effects of the proposed algorithm are validated by comparing the processed cloud with the original cloud and testing within the CFD environment. The algorithm proved high effectiveness in improving skewness rate of the obtained mesh and geometry mapping accuracy (standard deviation below 5 centimeters in cloud-to-mesh comparison).</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 324-343\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624004015\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624004015","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
3D point cloud regularization method for uniform mesh generation of mining excavations
Mine excavation systems are usually dozens of kilometers long with varying geometry on a small scale (roughness and shape of the walls) and on a large scale (varying widths of the tunnels, turns, and crossings). In this article, the authors address the problem of analyzing laser scanning data from large mining structures that can be used for various purposes, with focus on ventilation simulations. Together with the quality of the measurement data (diverse point-cloud density, missing samples, holes induced by obstructions in the field of view, measurement noise), this creates problems that require multi-stage processing of the obtained data. The authors propose a robust methodology to process a single segmented section of the mining system. The presented approach focuses on obtaining a point cloud ready for application in the computational fluid dynamics (CFD) analysis of airflow with minimal need for additional manual corrections on the generated mesh model. This requires the point cloud to have evenly distributed points and reduced noise (together with removal of objects inside) while keeping the unique geometrical properties and shape of the scanned tunnels. Proposed methodology uses trajectory of the excavation either obtained during the measurements or by skeletonization process explained in the article. Cross-sections obtained on planes perpendicular to the trajectory are processed towards the equalization of point distribution, removing measurement noise, holes in the point cloud and objects inside the excavation. The effects of the proposed algorithm are validated by comparing the processed cloud with the original cloud and testing within the CFD environment. The algorithm proved high effectiveness in improving skewness rate of the obtained mesh and geometry mapping accuracy (standard deviation below 5 centimeters in cloud-to-mesh comparison).
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.