Yanrui Ning , Jeffrey R. Bailey , Jeff Bourdier , Prathik Prasad , Israel Momoh
{"title":"利用机器学习和流体流动建模优化犹他州 FORGE 地热项目中生产井的几何形状","authors":"Yanrui Ning , Jeffrey R. Bailey , Jeff Bourdier , Prathik Prasad , Israel Momoh","doi":"10.1016/j.renene.2024.121767","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the critical challenge of optimizing well placement in Enhanced Geothermal Systems (EGS), specifically within the framework of the Utah FORGE geothermal project, as part of the 2023 Society of Petroleum Engineers (SPE) Geothermal Datathon. Effective well placement is essential for enhancing geothermal production efficiency and maximizing resource utilization. We employed a discrete fracture network (DFN) modeling approach, utilizing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm from the Scikit-Learn library to analyze microseismic event location data. Through rigorous simulations conducted in the open-source GeoDT fluid flow simulator, we identified an optimal production well configuration characterized by a spacing of 400 m, an injection rate of 0.03 m³/s, and alignment parameters that significantly improve thermal recovery. The results indicate a projected net present value (NPV) of $75 million over a 20-year operational horizon, underscoring the economic potential of optimized well placement strategies. This study offers valuable insights for the operation of the FORGE geothermal site. More importantly, it exclusively utilizes open-source tools, enhancing accessibility and adaptability for the broader geothermal community.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121767"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing production well geometry in the Utah FORGE geothermal project using machine learning and fluid flow modeling\",\"authors\":\"Yanrui Ning , Jeffrey R. Bailey , Jeff Bourdier , Prathik Prasad , Israel Momoh\",\"doi\":\"10.1016/j.renene.2024.121767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study addresses the critical challenge of optimizing well placement in Enhanced Geothermal Systems (EGS), specifically within the framework of the Utah FORGE geothermal project, as part of the 2023 Society of Petroleum Engineers (SPE) Geothermal Datathon. Effective well placement is essential for enhancing geothermal production efficiency and maximizing resource utilization. We employed a discrete fracture network (DFN) modeling approach, utilizing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm from the Scikit-Learn library to analyze microseismic event location data. Through rigorous simulations conducted in the open-source GeoDT fluid flow simulator, we identified an optimal production well configuration characterized by a spacing of 400 m, an injection rate of 0.03 m³/s, and alignment parameters that significantly improve thermal recovery. The results indicate a projected net present value (NPV) of $75 million over a 20-year operational horizon, underscoring the economic potential of optimized well placement strategies. This study offers valuable insights for the operation of the FORGE geothermal site. More importantly, it exclusively utilizes open-source tools, enhancing accessibility and adaptability for the broader geothermal community.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"237 \",\"pages\":\"Article 121767\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148124018354\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124018354","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimizing production well geometry in the Utah FORGE geothermal project using machine learning and fluid flow modeling
This study addresses the critical challenge of optimizing well placement in Enhanced Geothermal Systems (EGS), specifically within the framework of the Utah FORGE geothermal project, as part of the 2023 Society of Petroleum Engineers (SPE) Geothermal Datathon. Effective well placement is essential for enhancing geothermal production efficiency and maximizing resource utilization. We employed a discrete fracture network (DFN) modeling approach, utilizing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm from the Scikit-Learn library to analyze microseismic event location data. Through rigorous simulations conducted in the open-source GeoDT fluid flow simulator, we identified an optimal production well configuration characterized by a spacing of 400 m, an injection rate of 0.03 m³/s, and alignment parameters that significantly improve thermal recovery. The results indicate a projected net present value (NPV) of $75 million over a 20-year operational horizon, underscoring the economic potential of optimized well placement strategies. This study offers valuable insights for the operation of the FORGE geothermal site. More importantly, it exclusively utilizes open-source tools, enhancing accessibility and adaptability for the broader geothermal community.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.