Caroline Varella Rodrigues , Leonardo Matias de Oliveira Filho , Franciele Pereira Camargo , Henrique de Souza Dornelles , Isabel Kimiko Sakamoto , Sandra Imaculada Maintinguer , Edson Luiz Silva , Maria Bernadete Amâncio Varesche
{"title":"农用工业固体和液体废物管理的新方法:不同水力停留时间下 EGSB 反应器生产甲烷的性能","authors":"Caroline Varella Rodrigues , Leonardo Matias de Oliveira Filho , Franciele Pereira Camargo , Henrique de Souza Dornelles , Isabel Kimiko Sakamoto , Sandra Imaculada Maintinguer , Edson Luiz Silva , Maria Bernadete Amâncio Varesche","doi":"10.1016/j.renene.2024.121822","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the removal of agro-industrial wastes (5 g COD L⁻<sup>1</sup> from coffee and 0.5 g COD L⁻<sup>1</sup> from brewery wastewater, plus 1 g L⁻<sup>1</sup> of coffee pulp and husk) in a continuous Expanded Granular Sludge Bed (EGSB) reactor at 35 °C. The effect of Hydraulic Retention Times (HRTs) of 72h, 48h, and 24h on CH₄ yield was examined using a mixed culture of cattle manure and granular sludge. Methane yields were 201, 124.5, and 113.8 mL CH₄ g⁻<sup>1</sup> COD for the 1st, 2nd, and 3rd phases, respectively. Volatile fatty acids, particularly acetic acid, increased at lower HRTs. Sequencing of the 16S rRNA gene on the Illumina HiSeq platform revealed a syntrophic relationship between <em>Syntrophorhabdus</em>, <em>Syntrophobacter</em>, and <em>Pseudomonas</em> with methanogens <em>Methanomassiliicoccus</em>, <em>Methanospirillum</em>, and <em>Methanobacterium</em>, aiding in the removal of phenolic compounds. The study suggests that an HRT of 72h is optimal for maximizing CH₄ production in the EGSB reactor.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121822"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New approach to agro-industrial solid and liquid waste management: Performance of an EGSB reactor at different hydraulic retention times for methane production\",\"authors\":\"Caroline Varella Rodrigues , Leonardo Matias de Oliveira Filho , Franciele Pereira Camargo , Henrique de Souza Dornelles , Isabel Kimiko Sakamoto , Sandra Imaculada Maintinguer , Edson Luiz Silva , Maria Bernadete Amâncio Varesche\",\"doi\":\"10.1016/j.renene.2024.121822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the removal of agro-industrial wastes (5 g COD L⁻<sup>1</sup> from coffee and 0.5 g COD L⁻<sup>1</sup> from brewery wastewater, plus 1 g L⁻<sup>1</sup> of coffee pulp and husk) in a continuous Expanded Granular Sludge Bed (EGSB) reactor at 35 °C. The effect of Hydraulic Retention Times (HRTs) of 72h, 48h, and 24h on CH₄ yield was examined using a mixed culture of cattle manure and granular sludge. Methane yields were 201, 124.5, and 113.8 mL CH₄ g⁻<sup>1</sup> COD for the 1st, 2nd, and 3rd phases, respectively. Volatile fatty acids, particularly acetic acid, increased at lower HRTs. Sequencing of the 16S rRNA gene on the Illumina HiSeq platform revealed a syntrophic relationship between <em>Syntrophorhabdus</em>, <em>Syntrophobacter</em>, and <em>Pseudomonas</em> with methanogens <em>Methanomassiliicoccus</em>, <em>Methanospirillum</em>, and <em>Methanobacterium</em>, aiding in the removal of phenolic compounds. The study suggests that an HRT of 72h is optimal for maximizing CH₄ production in the EGSB reactor.</div></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":\"237 \",\"pages\":\"Article 121822\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148124018901\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124018901","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
New approach to agro-industrial solid and liquid waste management: Performance of an EGSB reactor at different hydraulic retention times for methane production
This study investigated the removal of agro-industrial wastes (5 g COD L⁻1 from coffee and 0.5 g COD L⁻1 from brewery wastewater, plus 1 g L⁻1 of coffee pulp and husk) in a continuous Expanded Granular Sludge Bed (EGSB) reactor at 35 °C. The effect of Hydraulic Retention Times (HRTs) of 72h, 48h, and 24h on CH₄ yield was examined using a mixed culture of cattle manure and granular sludge. Methane yields were 201, 124.5, and 113.8 mL CH₄ g⁻1 COD for the 1st, 2nd, and 3rd phases, respectively. Volatile fatty acids, particularly acetic acid, increased at lower HRTs. Sequencing of the 16S rRNA gene on the Illumina HiSeq platform revealed a syntrophic relationship between Syntrophorhabdus, Syntrophobacter, and Pseudomonas with methanogens Methanomassiliicoccus, Methanospirillum, and Methanobacterium, aiding in the removal of phenolic compounds. The study suggests that an HRT of 72h is optimal for maximizing CH₄ production in the EGSB reactor.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.