具有交叉注意机制和 Dempster-Shafer 证据理论的叶片裂纹多传感器融合增量检测模型

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2024-10-01 DOI:10.1016/j.aei.2024.102952
Tianchi Ma , Yuguang Fu
{"title":"具有交叉注意机制和 Dempster-Shafer 证据理论的叶片裂纹多传感器融合增量检测模型","authors":"Tianchi Ma ,&nbsp;Yuguang Fu","doi":"10.1016/j.aei.2024.102952","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning-based blade crack detection models work on the premise of a fixed data distribution, while the influx of new dataset for faults under blade crack propagation often leads to a catastrophic forgetting problem. Meanwhile, it is difficult for a single sensor to reflect the health status of the blade comprehensively under the limitation of installation location and coverage. To solve the above problems, a multi-sensor fused incremental detection model (MFIDM) for blade cracks with the cross-attention mechanism and the Dempster-Shafer evidence theory (DST) is proposed. Firstly, vibration signals of centrifugal fans are collected by multiple accelerometers deployed at different locations. Then, a two-branch feature fusion method based on the cross-attention mechanism is proposed to overcome the class imbalance due to the replay incremental learning method. After that, the fused features are fed into a Softmax classifier to complete the initial classification of blade status. Finally, a modified DST based on the cross-correlation energy is adopted for multi-sensor decision fusion to obtain the final blade crack detection results. The effectiveness of the proposed method is verified by two incremental blade crack datasets, and MFIDM achieves the better performance compared with other related incremental detection methods.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102952"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-sensor fused incremental detection model for blade crack with cross-attention mechanism and Dempster-Shafer evidence theory\",\"authors\":\"Tianchi Ma ,&nbsp;Yuguang Fu\",\"doi\":\"10.1016/j.aei.2024.102952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning-based blade crack detection models work on the premise of a fixed data distribution, while the influx of new dataset for faults under blade crack propagation often leads to a catastrophic forgetting problem. Meanwhile, it is difficult for a single sensor to reflect the health status of the blade comprehensively under the limitation of installation location and coverage. To solve the above problems, a multi-sensor fused incremental detection model (MFIDM) for blade cracks with the cross-attention mechanism and the Dempster-Shafer evidence theory (DST) is proposed. Firstly, vibration signals of centrifugal fans are collected by multiple accelerometers deployed at different locations. Then, a two-branch feature fusion method based on the cross-attention mechanism is proposed to overcome the class imbalance due to the replay incremental learning method. After that, the fused features are fed into a Softmax classifier to complete the initial classification of blade status. Finally, a modified DST based on the cross-correlation energy is adopted for multi-sensor decision fusion to obtain the final blade crack detection results. The effectiveness of the proposed method is verified by two incremental blade crack datasets, and MFIDM achieves the better performance compared with other related incremental detection methods.</div></div>\",\"PeriodicalId\":50941,\"journal\":{\"name\":\"Advanced Engineering Informatics\",\"volume\":\"62 \",\"pages\":\"Article 102952\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474034624006037\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624006037","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于深度学习的叶片裂纹检测模型是在数据分布固定的前提下工作的,而在叶片裂纹传播过程中,新的故障数据集的涌入往往会导致灾难性的遗忘问题。同时,受安装位置和覆盖范围的限制,单个传感器很难全面反映叶片的健康状况。为解决上述问题,本文提出了一种采用交叉注意机制和 Dempster-Shafer 证据理论(DST)的叶片裂纹多传感器融合增量检测模型(MFIDM)。首先,通过部署在不同位置的多个加速度计采集离心风机的振动信号。然后,提出一种基于交叉注意机制的双分支特征融合方法,以克服重放增量学习方法造成的类不平衡问题。然后,将融合后的特征输入 Softmax 分类器,完成叶片状态的初步分类。最后,采用基于交叉相关能量的修正 DST 进行多传感器决策融合,得到最终的叶片裂纹检测结果。通过两个增量叶片裂纹数据集验证了所提方法的有效性,与其他相关增量检测方法相比,MFIDM 取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-sensor fused incremental detection model for blade crack with cross-attention mechanism and Dempster-Shafer evidence theory
Deep learning-based blade crack detection models work on the premise of a fixed data distribution, while the influx of new dataset for faults under blade crack propagation often leads to a catastrophic forgetting problem. Meanwhile, it is difficult for a single sensor to reflect the health status of the blade comprehensively under the limitation of installation location and coverage. To solve the above problems, a multi-sensor fused incremental detection model (MFIDM) for blade cracks with the cross-attention mechanism and the Dempster-Shafer evidence theory (DST) is proposed. Firstly, vibration signals of centrifugal fans are collected by multiple accelerometers deployed at different locations. Then, a two-branch feature fusion method based on the cross-attention mechanism is proposed to overcome the class imbalance due to the replay incremental learning method. After that, the fused features are fed into a Softmax classifier to complete the initial classification of blade status. Finally, a modified DST based on the cross-correlation energy is adopted for multi-sensor decision fusion to obtain the final blade crack detection results. The effectiveness of the proposed method is verified by two incremental blade crack datasets, and MFIDM achieves the better performance compared with other related incremental detection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
A method for constructing an ergonomics evaluation indicator system for community aging services based on Kano-Delphi-CFA: A case study in China A temperature-sensitive points selection method for machine tool based on rough set and multi-objective adaptive hybrid evolutionary algorithm Enhancing EEG artifact removal through neural architecture search with large kernels Optimal design of an integrated inspection scheme with two adjustable sampling mechanisms for lot disposition A novel product shape design method integrating Kansei engineering and whale optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1