Radek Holeňák , Dmitrii Moldarev , Eleni Ntemou , Theofanis Tsakiris , Carolin Frank , Kevin Vomschee , Svenja Lohmann , Daniel Primetzhofer
{"title":"利用中等能量离子进行样品合成、制备和改性以及原位深度剖析的新系统","authors":"Radek Holeňák , Dmitrii Moldarev , Eleni Ntemou , Theofanis Tsakiris , Carolin Frank , Kevin Vomschee , Svenja Lohmann , Daniel Primetzhofer","doi":"10.1016/j.vacuum.2024.113824","DOIUrl":null,"url":null,"abstract":"<div><div>We present equipment for sample synthesis, preparation and modification enabling <em>in-situ</em> studies employing medium energy ion beams at the ion implanter facility of the Tandem Laboratory national research infrastructure at Uppsala University. The integral instrumentation enables controlled thin-film synthesis, modification and characterization applicable to study near-surface processes such as thin-film growth, phase transformation, oxidation, annealing, catalysis or ion implantation. We describe the available instrumentation with its specifications and present four demonstrative experiments with a particular focus on the acquired <em>in-situ</em> capabilities addressing 1) Evaporation and thermal alloying of thin films – nickel silicides 2) Reactive magnetron sputtering and controlled oxidization – photochromic YHO 3) Sputtering and low-energy implantation – hydrogen in tungsten and 4) Surface cleaning of sensitive systems – self-supporting silicon membranes.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113824"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new system for sample synthesis, preparation and modification combined with in-situ depth profiling using medium energy ions\",\"authors\":\"Radek Holeňák , Dmitrii Moldarev , Eleni Ntemou , Theofanis Tsakiris , Carolin Frank , Kevin Vomschee , Svenja Lohmann , Daniel Primetzhofer\",\"doi\":\"10.1016/j.vacuum.2024.113824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present equipment for sample synthesis, preparation and modification enabling <em>in-situ</em> studies employing medium energy ion beams at the ion implanter facility of the Tandem Laboratory national research infrastructure at Uppsala University. The integral instrumentation enables controlled thin-film synthesis, modification and characterization applicable to study near-surface processes such as thin-film growth, phase transformation, oxidation, annealing, catalysis or ion implantation. We describe the available instrumentation with its specifications and present four demonstrative experiments with a particular focus on the acquired <em>in-situ</em> capabilities addressing 1) Evaporation and thermal alloying of thin films – nickel silicides 2) Reactive magnetron sputtering and controlled oxidization – photochromic YHO 3) Sputtering and low-energy implantation – hydrogen in tungsten and 4) Surface cleaning of sensitive systems – self-supporting silicon membranes.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"231 \",\"pages\":\"Article 113824\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X24008704\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008704","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A new system for sample synthesis, preparation and modification combined with in-situ depth profiling using medium energy ions
We present equipment for sample synthesis, preparation and modification enabling in-situ studies employing medium energy ion beams at the ion implanter facility of the Tandem Laboratory national research infrastructure at Uppsala University. The integral instrumentation enables controlled thin-film synthesis, modification and characterization applicable to study near-surface processes such as thin-film growth, phase transformation, oxidation, annealing, catalysis or ion implantation. We describe the available instrumentation with its specifications and present four demonstrative experiments with a particular focus on the acquired in-situ capabilities addressing 1) Evaporation and thermal alloying of thin films – nickel silicides 2) Reactive magnetron sputtering and controlled oxidization – photochromic YHO 3) Sputtering and low-energy implantation – hydrogen in tungsten and 4) Surface cleaning of sensitive systems – self-supporting silicon membranes.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.