Yinzhou Liu , Weidong Zheng , Haoqiang Ai , Lin Cheng , Ruiqiang Guo , Xiaohan Song
{"title":"利用深度学习和集合学习相结合的方法预测带有一维定向填料的聚合物复合材料的导热性能","authors":"Yinzhou Liu , Weidong Zheng , Haoqiang Ai , Lin Cheng , Ruiqiang Guo , Xiaohan Song","doi":"10.1016/j.egyai.2024.100445","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer composites with one-dimensional (1D) oriented fillers, recognized for their high thermal conductivity (TC), are extensively utilized in cooling electronic components. However, the prediction of the TC of composites with 1D oriented fillers poses a challenge due to the significant impact of filler orientation on composite TC. In this paper, we use a strategy that combines deep learning and ensemble learning to efficiently and quickly predict the TC of composites with 1D oriented fillers. First, as a control, we used convolutional neural network (CNN) model to predict the TC of 1D carbon fiber-epoxy composite, and the R-squared (R<sup>2</sup>) on the test set reached 0.924. However, for composites consist of different matrices and fillers, the CNN model needs to be retrained, which greatly wastes computing resources. Therefore, we define a descriptor ‘Orientation degree (<em>O<sub>d</sub></em>)’ to quantitatively describe the spatial distribution of the 1D fillers. CNN model was used to predict this structural parameter, the accuracy R<sup>2</sup> can reach 0.950 on the test set. Using <em>O<sub>d</sub></em> as a feature, random forest regression (RFR) was used to predict the TC, and the accuracy R<sup>2</sup> reached 0.954 on the test set, which was higher than that of CNN control group. We further successfully extended this strategy to composites consist of different 1D fillers and matrices, and only one CNN model and one RFR model needed to be trained to achieve fast and accurate TC prediction. This strategy provides valuable insights and guidance for machine learning-based material property prediction.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"18 ","pages":"Article 100445"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the thermal conductivity of polymer composites with one-dimensional oriented fillers using the combination of deep learning and ensemble learning\",\"authors\":\"Yinzhou Liu , Weidong Zheng , Haoqiang Ai , Lin Cheng , Ruiqiang Guo , Xiaohan Song\",\"doi\":\"10.1016/j.egyai.2024.100445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polymer composites with one-dimensional (1D) oriented fillers, recognized for their high thermal conductivity (TC), are extensively utilized in cooling electronic components. However, the prediction of the TC of composites with 1D oriented fillers poses a challenge due to the significant impact of filler orientation on composite TC. In this paper, we use a strategy that combines deep learning and ensemble learning to efficiently and quickly predict the TC of composites with 1D oriented fillers. First, as a control, we used convolutional neural network (CNN) model to predict the TC of 1D carbon fiber-epoxy composite, and the R-squared (R<sup>2</sup>) on the test set reached 0.924. However, for composites consist of different matrices and fillers, the CNN model needs to be retrained, which greatly wastes computing resources. Therefore, we define a descriptor ‘Orientation degree (<em>O<sub>d</sub></em>)’ to quantitatively describe the spatial distribution of the 1D fillers. CNN model was used to predict this structural parameter, the accuracy R<sup>2</sup> can reach 0.950 on the test set. Using <em>O<sub>d</sub></em> as a feature, random forest regression (RFR) was used to predict the TC, and the accuracy R<sup>2</sup> reached 0.954 on the test set, which was higher than that of CNN control group. We further successfully extended this strategy to composites consist of different 1D fillers and matrices, and only one CNN model and one RFR model needed to be trained to achieve fast and accurate TC prediction. This strategy provides valuable insights and guidance for machine learning-based material property prediction.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"18 \",\"pages\":\"Article 100445\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546824001113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824001113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Predicting the thermal conductivity of polymer composites with one-dimensional oriented fillers using the combination of deep learning and ensemble learning
Polymer composites with one-dimensional (1D) oriented fillers, recognized for their high thermal conductivity (TC), are extensively utilized in cooling electronic components. However, the prediction of the TC of composites with 1D oriented fillers poses a challenge due to the significant impact of filler orientation on composite TC. In this paper, we use a strategy that combines deep learning and ensemble learning to efficiently and quickly predict the TC of composites with 1D oriented fillers. First, as a control, we used convolutional neural network (CNN) model to predict the TC of 1D carbon fiber-epoxy composite, and the R-squared (R2) on the test set reached 0.924. However, for composites consist of different matrices and fillers, the CNN model needs to be retrained, which greatly wastes computing resources. Therefore, we define a descriptor ‘Orientation degree (Od)’ to quantitatively describe the spatial distribution of the 1D fillers. CNN model was used to predict this structural parameter, the accuracy R2 can reach 0.950 on the test set. Using Od as a feature, random forest regression (RFR) was used to predict the TC, and the accuracy R2 reached 0.954 on the test set, which was higher than that of CNN control group. We further successfully extended this strategy to composites consist of different 1D fillers and matrices, and only one CNN model and one RFR model needed to be trained to achieve fast and accurate TC prediction. This strategy provides valuable insights and guidance for machine learning-based material property prediction.