钼空位增强铂、镍共掺Mo2C纳米纤维的高效水分解性能

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Vacuum Pub Date : 2024-11-01 DOI:10.1016/j.vacuum.2024.113792
Keke Huang , Yaotian Yan , Jingxuan Li , Liang Qiao , Jiehe Sui , Wei Cai , Xiaohang Zheng
{"title":"钼空位增强铂、镍共掺Mo2C纳米纤维的高效水分解性能","authors":"Keke Huang ,&nbsp;Yaotian Yan ,&nbsp;Jingxuan Li ,&nbsp;Liang Qiao ,&nbsp;Jiehe Sui ,&nbsp;Wei Cai ,&nbsp;Xiaohang Zheng","doi":"10.1016/j.vacuum.2024.113792","DOIUrl":null,"url":null,"abstract":"<div><div>Hard alloy type compounds are promising candidates for developing robust and cost-effective electrocatalysts due to the good conductivity and lattice hardness. However, their insufficient intrinsic activities require further surface modification, which remains a significant challenge due to the high hardness and surface inertness. Herein, a vacancies-promoted heteroatoms integration method is provided to construct Pt and Ni co-incorporated molybdenum carbide nanofibers ((Pt, Ni)-Mo<sub>2</sub>C). The Pt and Ni atoms filling into the Mo vacancy reduce the formation energy by ∼5.5 eV, which indicates an improved crystal stability. The electrons flow from Mo, Ni centers to Pt, C centers, resulting in the shifted average valence of Mo, Ni sites and moderate oxidation states of Pt, C sites. Therefore, the hydrogen adsorption free energy (ΔG<sub>∗H</sub>) of Mo and C sites increases from ∼-0.6 eV to ∼-0.03 eV (C sites) and ∼-0.2 eV (Mo sites), resulting in a state closer to ideal state (0 eV). As a result, the (Pt, Ni)-Mo<sub>2</sub>C catalyst exhibits an excellent overpotential of 64 mV at 10 mA cm<sup>−2</sup> for hydrogen evolution reaction (HER), reducing by 149 mV than pure Mo<sub>2</sub>C. Current work paves a favorable method for integrating dissimilar atoms to modify hard alloy type compound surface.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113792"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mo vacancies enhancing Pt, Ni co-incorporated Mo2C nanofibers for high-efficiency water decomposition\",\"authors\":\"Keke Huang ,&nbsp;Yaotian Yan ,&nbsp;Jingxuan Li ,&nbsp;Liang Qiao ,&nbsp;Jiehe Sui ,&nbsp;Wei Cai ,&nbsp;Xiaohang Zheng\",\"doi\":\"10.1016/j.vacuum.2024.113792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hard alloy type compounds are promising candidates for developing robust and cost-effective electrocatalysts due to the good conductivity and lattice hardness. However, their insufficient intrinsic activities require further surface modification, which remains a significant challenge due to the high hardness and surface inertness. Herein, a vacancies-promoted heteroatoms integration method is provided to construct Pt and Ni co-incorporated molybdenum carbide nanofibers ((Pt, Ni)-Mo<sub>2</sub>C). The Pt and Ni atoms filling into the Mo vacancy reduce the formation energy by ∼5.5 eV, which indicates an improved crystal stability. The electrons flow from Mo, Ni centers to Pt, C centers, resulting in the shifted average valence of Mo, Ni sites and moderate oxidation states of Pt, C sites. Therefore, the hydrogen adsorption free energy (ΔG<sub>∗H</sub>) of Mo and C sites increases from ∼-0.6 eV to ∼-0.03 eV (C sites) and ∼-0.2 eV (Mo sites), resulting in a state closer to ideal state (0 eV). As a result, the (Pt, Ni)-Mo<sub>2</sub>C catalyst exhibits an excellent overpotential of 64 mV at 10 mA cm<sup>−2</sup> for hydrogen evolution reaction (HER), reducing by 149 mV than pure Mo<sub>2</sub>C. Current work paves a favorable method for integrating dissimilar atoms to modify hard alloy type compound surface.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"231 \",\"pages\":\"Article 113792\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X24008388\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008388","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硬质合金型化合物具有良好的导电性和晶格硬度,是开发坚固耐用且经济高效的电催化剂的理想候选材料。然而,由于硬度和表面惰性较高,它们的内在活性不足,需要进一步的表面改性,而这仍然是一个巨大的挑战。本文提供了一种空位促进杂原子整合的方法来构建铂和镍共嵌碳化钼纳米纤维((Pt, Ni)-Mo2C)。填充到 Mo 空位中的铂原子和镍原子使形成能降低了 5.5 eV,从而提高了晶体的稳定性。电子从 Mo、Ni 中心流向 Pt、C 中心,导致 Mo、Ni 位点的平均价态偏移和 Pt、C 位点的中等氧化态。因此,Mo 和 C 位点的氢吸附自由能(ΔG∗H)从 ∼-0.6 eV 增加到 ∼-0.03 eV(C 位点)和 ∼-0.2 eV(Mo 位点),从而更接近理想状态(0 eV)。因此,(Pt, Ni)-Mo2C 催化剂在 10 mA cm-2 氢进化反应(HER)中表现出 64 mV 的优异过电位,比纯 Mo2C 减少了 149 mV。目前的工作为整合不同原子以改性硬质合金型化合物表面铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mo vacancies enhancing Pt, Ni co-incorporated Mo2C nanofibers for high-efficiency water decomposition
Hard alloy type compounds are promising candidates for developing robust and cost-effective electrocatalysts due to the good conductivity and lattice hardness. However, their insufficient intrinsic activities require further surface modification, which remains a significant challenge due to the high hardness and surface inertness. Herein, a vacancies-promoted heteroatoms integration method is provided to construct Pt and Ni co-incorporated molybdenum carbide nanofibers ((Pt, Ni)-Mo2C). The Pt and Ni atoms filling into the Mo vacancy reduce the formation energy by ∼5.5 eV, which indicates an improved crystal stability. The electrons flow from Mo, Ni centers to Pt, C centers, resulting in the shifted average valence of Mo, Ni sites and moderate oxidation states of Pt, C sites. Therefore, the hydrogen adsorption free energy (ΔG∗H) of Mo and C sites increases from ∼-0.6 eV to ∼-0.03 eV (C sites) and ∼-0.2 eV (Mo sites), resulting in a state closer to ideal state (0 eV). As a result, the (Pt, Ni)-Mo2C catalyst exhibits an excellent overpotential of 64 mV at 10 mA cm−2 for hydrogen evolution reaction (HER), reducing by 149 mV than pure Mo2C. Current work paves a favorable method for integrating dissimilar atoms to modify hard alloy type compound surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
期刊最新文献
Martensite instability induced surface hardening on gradient nano-structured 316L stainless steel Molecular dynamics study on the mechanical behavior and deformation mechanism of gradient oxygen content nano-polycrystalline α-T Preparation of Au@AuAg yolk-shell nanoparticles with porous surface and their catalytic reduction of 4-nitrophenol Design a self-reinforcement buffer layer to assist braze SiC and Nb with Cu-xTiH2 filler alloy Defect engineering of anchored on F-doped BNNR surface to enhance low-frequency microwave absorption and achieve exceptional thermal conductivity properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1