钛和锆薄膜中与尺寸相关的机械性能和变形机制

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Vacuum Pub Date : 2024-11-07 DOI:10.1016/j.vacuum.2024.113810
Zhaoqi Hou , Tao Wang , Peipei Wang , Yuhao Wu , Wanchang Sun
{"title":"钛和锆薄膜中与尺寸相关的机械性能和变形机制","authors":"Zhaoqi Hou ,&nbsp;Tao Wang ,&nbsp;Peipei Wang ,&nbsp;Yuhao Wu ,&nbsp;Wanchang Sun","doi":"10.1016/j.vacuum.2024.113810","DOIUrl":null,"url":null,"abstract":"<div><div>The nanometallic Ti and Zr monolayer films with various thicknesses ranging from 600 to 2200 nm were prepared by using magnetron sputtering technique. The microstructure results demonstrated that Ti films transformed from hcp to fcc at <em>t</em> ≤ 600 nm, while Zr films were grown with hcp structure of nanocolumnar grain. Moreover, the grain orientation of hcp Ti films changed from (0002) preferred orientation at <em>t</em> = 1200 nm to random orientation at larger thickness. Subsequently, the hardness and strain rate sensitivity of films were explored by nanoindentation. The Hall-Petch relationship is obviously invalid to explain the film thickness dependent hardening behaviors in Ti and Zr films, and the influence of phase structure, orientation and residual stress on nanoindentation hardness was discussed. It seems that residual stress plays an important role in the determination of hardness in present Ti and Zr films. The negative strain rate sensitivity <em>m</em> appeared during the plastic deformation of fcc Ti films, which is caused by the phase transformation. The underlying deformation mechanism of hcp Ti and Zr films was also discussed.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113810"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size dependent mechanical properties and deformation mechanisms in Ti and Zr films\",\"authors\":\"Zhaoqi Hou ,&nbsp;Tao Wang ,&nbsp;Peipei Wang ,&nbsp;Yuhao Wu ,&nbsp;Wanchang Sun\",\"doi\":\"10.1016/j.vacuum.2024.113810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The nanometallic Ti and Zr monolayer films with various thicknesses ranging from 600 to 2200 nm were prepared by using magnetron sputtering technique. The microstructure results demonstrated that Ti films transformed from hcp to fcc at <em>t</em> ≤ 600 nm, while Zr films were grown with hcp structure of nanocolumnar grain. Moreover, the grain orientation of hcp Ti films changed from (0002) preferred orientation at <em>t</em> = 1200 nm to random orientation at larger thickness. Subsequently, the hardness and strain rate sensitivity of films were explored by nanoindentation. The Hall-Petch relationship is obviously invalid to explain the film thickness dependent hardening behaviors in Ti and Zr films, and the influence of phase structure, orientation and residual stress on nanoindentation hardness was discussed. It seems that residual stress plays an important role in the determination of hardness in present Ti and Zr films. The negative strain rate sensitivity <em>m</em> appeared during the plastic deformation of fcc Ti films, which is caused by the phase transformation. The underlying deformation mechanism of hcp Ti and Zr films was also discussed.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"231 \",\"pages\":\"Article 113810\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X2400856X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X2400856X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用磁控溅射技术制备了不同厚度(从 600 纳米到 2200 纳米)的纳米金属钛和锆单层薄膜。显微结构结果表明,Ti 薄膜在 t ≤ 600 nm 时由 hcp 转变为 fcc,而 Zr 薄膜则生长为纳米柱状晶粒的 hcp 结构。此外,hcp Ti 薄膜的晶粒取向从 t = 1200 nm 时的(0002)优先取向转变为厚度较大时的无规取向。随后,通过纳米压痕法探究了薄膜的硬度和应变速率敏感性。霍尔-佩奇关系显然无法解释钛和锆薄膜随厚度变化的硬化行为,因此讨论了相结构、取向和残余应力对纳米压痕硬度的影响。看来残余应力在目前钛和锆薄膜硬度的决定中起着重要作用。在 fcc Ti 薄膜的塑性变形过程中出现了负应变速率灵敏度 m,这是由相变引起的。此外,还讨论了 hcp Ti 和 Zr 薄膜的基本变形机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Size dependent mechanical properties and deformation mechanisms in Ti and Zr films
The nanometallic Ti and Zr monolayer films with various thicknesses ranging from 600 to 2200 nm were prepared by using magnetron sputtering technique. The microstructure results demonstrated that Ti films transformed from hcp to fcc at t ≤ 600 nm, while Zr films were grown with hcp structure of nanocolumnar grain. Moreover, the grain orientation of hcp Ti films changed from (0002) preferred orientation at t = 1200 nm to random orientation at larger thickness. Subsequently, the hardness and strain rate sensitivity of films were explored by nanoindentation. The Hall-Petch relationship is obviously invalid to explain the film thickness dependent hardening behaviors in Ti and Zr films, and the influence of phase structure, orientation and residual stress on nanoindentation hardness was discussed. It seems that residual stress plays an important role in the determination of hardness in present Ti and Zr films. The negative strain rate sensitivity m appeared during the plastic deformation of fcc Ti films, which is caused by the phase transformation. The underlying deformation mechanism of hcp Ti and Zr films was also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
期刊最新文献
Effects of pressure on the electronic and optical properties of defect-free and defect-containing fused silica: A first-principles study The precipitation behavior of natural aging for Al-Cu-Li alloy after homogenization Editorial Board and Vacuum units The study on the magnetic FeCoNiCuAl high-entropy alloy film with excellent corrosion resistance Microstructural deformation behavior of laser shock peening Ni alloys: Experimental and molecular dynamics simulation investigations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1