Ying Wang , Xiaoyong He , Thomas Breugem , Dennis Huisman
{"title":"解决铁路机组人员重新规划问题的分解方法","authors":"Ying Wang , Xiaoyong He , Thomas Breugem , Dennis Huisman","doi":"10.1016/j.jrtpm.2024.100487","DOIUrl":null,"url":null,"abstract":"<div><div>Crew re-planning is an important and difficult task in railway crew management. In this paper, we establish a path-based model solving the Individual Crew Re-planning Problem (ICRP). The individual indicates that we focus the problem on specific (non-anonymous) crew members, considering their roles (leader and cabin crew) and qualifications. This problem is inspired by the crew planning problem faced in Chinese high-speed railway operations. To generate feasible paths, we construct a multi-layer time-space connection network and develop a heuristic algorithm. To decrease the complexity and scale of the model, we decompose the ICRP into two sub-problems (for leaders and for cabin crew members respectively) which can be solved in sequence. In addition, we develop a Lagrangian relaxation (LR) algorithm to get valid paths quickly for both sub-problems. We combine the LR algorithm with solving the restricted decomposed models to get a good quality solution for the studied ICRP problem. We test our methods on several real-world instances from Chinese high-speed railways. The computational experiments show that our LR algorithm with a decomposition strategy can solve the decomposed models in a relatively short computation time compared to solving the original model directly, while obtaining (near-)optimal solutions for all instances.</div></div>","PeriodicalId":51821,"journal":{"name":"Journal of Rail Transport Planning & Management","volume":"32 ","pages":"Article 100487"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A decomposition approach to solve the individual railway crew Re-planning problem\",\"authors\":\"Ying Wang , Xiaoyong He , Thomas Breugem , Dennis Huisman\",\"doi\":\"10.1016/j.jrtpm.2024.100487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Crew re-planning is an important and difficult task in railway crew management. In this paper, we establish a path-based model solving the Individual Crew Re-planning Problem (ICRP). The individual indicates that we focus the problem on specific (non-anonymous) crew members, considering their roles (leader and cabin crew) and qualifications. This problem is inspired by the crew planning problem faced in Chinese high-speed railway operations. To generate feasible paths, we construct a multi-layer time-space connection network and develop a heuristic algorithm. To decrease the complexity and scale of the model, we decompose the ICRP into two sub-problems (for leaders and for cabin crew members respectively) which can be solved in sequence. In addition, we develop a Lagrangian relaxation (LR) algorithm to get valid paths quickly for both sub-problems. We combine the LR algorithm with solving the restricted decomposed models to get a good quality solution for the studied ICRP problem. We test our methods on several real-world instances from Chinese high-speed railways. The computational experiments show that our LR algorithm with a decomposition strategy can solve the decomposed models in a relatively short computation time compared to solving the original model directly, while obtaining (near-)optimal solutions for all instances.</div></div>\",\"PeriodicalId\":51821,\"journal\":{\"name\":\"Journal of Rail Transport Planning & Management\",\"volume\":\"32 \",\"pages\":\"Article 100487\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rail Transport Planning & Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221097062400057X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rail Transport Planning & Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221097062400057X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
A decomposition approach to solve the individual railway crew Re-planning problem
Crew re-planning is an important and difficult task in railway crew management. In this paper, we establish a path-based model solving the Individual Crew Re-planning Problem (ICRP). The individual indicates that we focus the problem on specific (non-anonymous) crew members, considering their roles (leader and cabin crew) and qualifications. This problem is inspired by the crew planning problem faced in Chinese high-speed railway operations. To generate feasible paths, we construct a multi-layer time-space connection network and develop a heuristic algorithm. To decrease the complexity and scale of the model, we decompose the ICRP into two sub-problems (for leaders and for cabin crew members respectively) which can be solved in sequence. In addition, we develop a Lagrangian relaxation (LR) algorithm to get valid paths quickly for both sub-problems. We combine the LR algorithm with solving the restricted decomposed models to get a good quality solution for the studied ICRP problem. We test our methods on several real-world instances from Chinese high-speed railways. The computational experiments show that our LR algorithm with a decomposition strategy can solve the decomposed models in a relatively short computation time compared to solving the original model directly, while obtaining (near-)optimal solutions for all instances.