增强阻燃性可膨胀石墨改性丝纤维基硬质聚氨酯泡沫的热性能和机械性能

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS Case Studies in Thermal Engineering Pub Date : 2024-11-05 DOI:10.1016/j.csite.2024.105418
Xu Zhang , Qihong Guan , Qikai Xiao , Zhi Wang , Hua Xie
{"title":"增强阻燃性可膨胀石墨改性丝纤维基硬质聚氨酯泡沫的热性能和机械性能","authors":"Xu Zhang ,&nbsp;Qihong Guan ,&nbsp;Qikai Xiao ,&nbsp;Zhi Wang ,&nbsp;Hua Xie","doi":"10.1016/j.csite.2024.105418","DOIUrl":null,"url":null,"abstract":"<div><div>At present, in order to reduce the environmental pollution caused by the use of petrochemical products, the preparation of flame-retardant polyurethane foam (PUF) using green raw materials is increasingly attracting widespread attention. A biomass protein-based green flame-retardant rigid PUF (RPUF) with expandable graphite (EG) and silk fibroin (SF) was prepared in a one-step process. Thermal stability, combustion characteristics and compression properties of modified RPUFs were investigated by thermogravimetric analysis, cone test, limiting oxygen index (LOI) test, UL-94 vertical burning test and mechanical compression test. The RPUF with 10 wt% EG (RPUF-SF/EG10) exhibited superior heat resistance, with the highest initial decomposition temperature (Ti), integral programmed decomposition temperatures (IPDT) and activation energy (E). And RPUF-SF/EG10 had the lowest peak heat release rate (PHRR) and total heat release (THR), and it also showed the highest LOI and had a flammability rating of V-0. In Addition, the apparent density and compressive strength of RPUF-SF/EG10 were the largest among the four EG-added materials. The results indicated that RPUF-SF/EG10 had excellent thermal stability, flame retardancy and compression resistance, which was attributed to the synergistic effect of SF and EG in the system. This provided a valuable reference for the development of new, environmentally friendly and high-performance RPUFs.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"64 ","pages":"Article 105418"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced thermal and mechanical properties of flame-retardant expandable graphite modified silk fibroin-based rigid polyurethane foam\",\"authors\":\"Xu Zhang ,&nbsp;Qihong Guan ,&nbsp;Qikai Xiao ,&nbsp;Zhi Wang ,&nbsp;Hua Xie\",\"doi\":\"10.1016/j.csite.2024.105418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>At present, in order to reduce the environmental pollution caused by the use of petrochemical products, the preparation of flame-retardant polyurethane foam (PUF) using green raw materials is increasingly attracting widespread attention. A biomass protein-based green flame-retardant rigid PUF (RPUF) with expandable graphite (EG) and silk fibroin (SF) was prepared in a one-step process. Thermal stability, combustion characteristics and compression properties of modified RPUFs were investigated by thermogravimetric analysis, cone test, limiting oxygen index (LOI) test, UL-94 vertical burning test and mechanical compression test. The RPUF with 10 wt% EG (RPUF-SF/EG10) exhibited superior heat resistance, with the highest initial decomposition temperature (Ti), integral programmed decomposition temperatures (IPDT) and activation energy (E). And RPUF-SF/EG10 had the lowest peak heat release rate (PHRR) and total heat release (THR), and it also showed the highest LOI and had a flammability rating of V-0. In Addition, the apparent density and compressive strength of RPUF-SF/EG10 were the largest among the four EG-added materials. The results indicated that RPUF-SF/EG10 had excellent thermal stability, flame retardancy and compression resistance, which was attributed to the synergistic effect of SF and EG in the system. This provided a valuable reference for the development of new, environmentally friendly and high-performance RPUFs.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":\"64 \",\"pages\":\"Article 105418\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24014497\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24014497","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

目前,为了减少使用石化产品造成的环境污染,使用绿色原料制备阻燃聚氨酯泡沫(PUF)正日益受到广泛关注。本研究采用一步法制备了一种基于生物质蛋白的绿色阻燃硬质聚氨酯泡沫(RPUF),其中含有可膨胀石墨(EG)和丝纤维素(SF)。通过热重分析、锥体试验、极限氧指数(LOI)试验、UL-94 垂直燃烧试验和机械压缩试验研究了改性 RPUF 的热稳定性、燃烧特性和压缩性能。含有 10 wt% EG 的 RPUF(RPUF-SF/EG10)表现出优异的耐热性,其初始分解温度(Ti)、积分程序分解温度(IPDT)和活化能(E)均最高。此外,RPUF-SF/EG10 的峰值放热率(PHRR)和总放热率(THR)最低,LOI 最高,可燃性等级为 V-0。此外,在四种添加 EG 的材料中,RPUF-SF/EG10 的表观密度和抗压强度最大。结果表明,RPUF-SF/EG10 具有优异的热稳定性、阻燃性和抗压性,这归功于体系中 SF 和 EG 的协同作用。这为开发新型、环保和高性能的 RPUF 提供了宝贵的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced thermal and mechanical properties of flame-retardant expandable graphite modified silk fibroin-based rigid polyurethane foam
At present, in order to reduce the environmental pollution caused by the use of petrochemical products, the preparation of flame-retardant polyurethane foam (PUF) using green raw materials is increasingly attracting widespread attention. A biomass protein-based green flame-retardant rigid PUF (RPUF) with expandable graphite (EG) and silk fibroin (SF) was prepared in a one-step process. Thermal stability, combustion characteristics and compression properties of modified RPUFs were investigated by thermogravimetric analysis, cone test, limiting oxygen index (LOI) test, UL-94 vertical burning test and mechanical compression test. The RPUF with 10 wt% EG (RPUF-SF/EG10) exhibited superior heat resistance, with the highest initial decomposition temperature (Ti), integral programmed decomposition temperatures (IPDT) and activation energy (E). And RPUF-SF/EG10 had the lowest peak heat release rate (PHRR) and total heat release (THR), and it also showed the highest LOI and had a flammability rating of V-0. In Addition, the apparent density and compressive strength of RPUF-SF/EG10 were the largest among the four EG-added materials. The results indicated that RPUF-SF/EG10 had excellent thermal stability, flame retardancy and compression resistance, which was attributed to the synergistic effect of SF and EG in the system. This provided a valuable reference for the development of new, environmentally friendly and high-performance RPUFs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
期刊最新文献
Numerical analysis and experimental study of two-phase flow pattern and pressure drop characteristics in internally microfin tubes A novel high-temperature water cooling system utilizing cascaded cold energy from underground water plants in northern China Combustion characteristics of a 660 MW tangentially fired pulverized coal boiler considering different loads, burner combinations and horizontal deflection angles Performance evaluation of supercritical CO2 Brayton cycle with two-stage compression and intercooling Research on the mechanical and thermal properties of potting adhesive with different fillers of h-BN and MPCM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1